
Application Lifecycle
Intelligence Go to Help Center online

https://admhelp.microfocus.com/alm/

Application Lifecycle
Intelligence
Software Version: 17.0

https://admhelp.microfocus.com/alm/

Document release date: April 2023

Send Us Feedback
Let us know how we can improve your experience with the
Application Lifecycle Intelligence.
Send your email to: docteam@microfocus.com

Legal Notices
©Copyright 2003 - 2023 Micro Focus or one of its affiliates.

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors
(“Micro Focus”) are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Micro Focus shall not be liable for technical or editorial errors or omissions
contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Contains Confidential Information. Except as specifically indicated otherwise, a valid license is
required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial license.

Disclaimer
Certain versions of software and/or documents (“Material”) accessible here may contain
branding from Hewlett-Packard Company (now HP Inc.) and Hewlett Packard Enterprise
Company. As of September 1, 2017, the Material is now offered by Micro Focus, a separately
owned and operated company. Any reference to the HP and Hewlett Packard Enterprise/HPE
marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are the
property of their respective owners.

Application Lifecycle Intelligence

Application Lifecycle Intelligence (17.0) Page 2 of 68

mailto:docteam@microfocus.com?subject=Feedback on Application Lifecycle Intelligence (Application Lifecycle Intelligence 17.0)

Contents
ALI introduction 5

ALI overview 6
ALI workflow 6

Before you begin 8
Enable the ALI extension 9
Migrate from previous versions 9
Configure scheduled synchronization 10
Configure TFS integration support 11

Setting up build system integration 14
Build system setup workflow 15
Hudson/Jenkins integration 16

ALI Hudson/Jenkins plugin deployment 16
ALI Hudson/Jenkins plugin configuration 18

TFS build server integration 19
Add a build server 20
Add build configurations 21
Reuse SCM configurations from build configurations 22
Set build configuration defect filters 22
Configure build change detection 23
Customize ALI project lists 24
Track code issues 25

Setting up source control management system integration 27
SCM setup workflow 28
SCM integration prerequisites and limitations 29

SCM agents 29
Add SCM repositories 31

Add a Subversion repository 32
Add a CVS repository 32
Add a Perforce repository 33
Add a TFS repository 34
Add a Git repository 35

Set an external repository viewer 36
Set commit patterns 39

Associate code changes with alternative identifiers 42
Add branches and associate with release 43
Set branch check-in policies 44

Application Lifecycle Intelligence

Application Lifecycle Intelligence (17.0) Page 3 of 68

Configure code change detection 46

Setting up Force.com integration 48
Prerequisites 49
Set up project deployment, testing, and report generation 49
Configure Hudson/Jenkins - Force.com 52

Managing SCM changes and traceability 53
SCM changes and traceability workflow 54
View code changes 54
View the impact of code changes 55
Generate project reports 56
Generate graphs 56

Monitoring build activity 58
View builds 59
View build reports 59
Generate build graphs 60
View build-test traceability 61

Monitoring development activity 63
Monitor Development Activity in the Releases module 63
Monitor Development Activity in the Requirements module 63
Monitor Development Activity in the Defects module 64

Appendix 1: Supported systems 65
Supported SCM systems 66
Supported build systems 67
Supported Force.com versions 68

Application Lifecycle Intelligence

Application Lifecycle Intelligence (17.0) Page 4 of 68

ALI introduction

This chapter contains a high-level look at ALI.

This chapter includes:

• ALI overview 6
• ALI workflow 6

Application Lifecycle Intelligence
ALI introduction

Application Lifecycle Intelligence (17.0) Page 5 of 68

ALI overview
Application Lifecycle Intelligence (ALI) tracks development activities and links
them to Application Lifecycle Management (ALM) entities. ALI integrates your
Source Code Management (SCM) and Build Management tools with Application
Lifecycle Management(ALM) and links activities such as code changes, builds, unit
test results, and code coverage analyses from your SCM and Build Management
tools to ALM entities such as Releases, Requirements, Defects, and Tests.

ALI also enables you to create and enforce SCM policy compliance. For example,
you can allow a check-in only if the feature is scheduled for a particular release, or
allow a check-in during stabilization only if the change fixes a severe defect. You
can require metadata before allowing a check-in, or lock a code-base for a release.

Note: This guide explains how to work with Application Lifecycle Intelligence
in conjunction with ALM (on-premise). For more information on using ALM,
see the Micro Focus Application Lifecycle Management User Guide.

Usage examples:

l Review code changes linked to a requirement or defect, or first included in a
build.

l Check what was implemented during a time period, for a release or build, or by
an individual contributor.

l Inspect line by line differences in code changes.
l Identify changes not associated with a requirement or defect.
l Review build and quality metrics.
l See which tests are based on a build.

ALI workflow
This section describes the overall ALI workflow.

Application Lifecycle Intelligence
ALI introduction

Application Lifecycle Intelligence (17.0) Page 6 of 68

1. Set up and configure ALI.

a. Enable the ALI extension in ALM.

See "Enable the ALI extension" on page 9.

b. If you used an earlier version of ALI, follow the steps in "Migrate from
previous versions" on page 9.

c. Configure the synchronization with SCM and build systems.

See "Configure scheduled synchronization" on page 10.

d. Set up and configure the connections with your build systems.

See "Setting up build system integration" on page 14.

e. Set up and configure the connections with your SCM systems.

See "Setting up source control management system integration" on page 27.

f. If you develop for the Force.com platform, set up Force.com integration.

See "Setting up Force.com integration" on page 48.

2. Track changes in the source code.

See "Managing SCM changes and traceability" on page 53.

3. Track the impact of development activity on releases, requirements, and
defects.

See "Monitoring development activity" on page 63.

4. Track the quality of your builds.

See "Monitoring build activity" on page 58.

Application Lifecycle Intelligence
ALI introduction

Application Lifecycle Intelligence (17.0) Page 7 of 68

Before you begin
This chapter provides details of the tasks you must complete before you can begin
setting up and configuring ALI.

This chapter includes:

• Enable the ALI extension 9
• Migrate from previous versions 9
• Configure scheduled synchronization 10
• Configure TFS integration support 11

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 8 of 68

Enable the ALI extension
In ALM Site Administration, enable the ALI extension for every project in which you
want to use ALI.

For more information on enabling extensions in an ALM project, refer to the
Application Lifecycle Management Administrator Guide.

Migrate from previous versions
This section includes:

l "Migrate from ALI 2.0 or earlier"
l "Migrate Perforce Data from ALI 1.1"
l "Upgrade work items"

To identify the ALI version you are working with, select Help > About from the
main ALMmenu.

Migrate from ALI 2.0 or earlier

1. In the Code Changes module, add theMessage column. After upgrading ALI
from a version earlier than 2.0, this column is no longer displayed unless you
add it.

2. If you use Perforce for source code management, follow the steps under
"Migrate Perforce Data from ALI 1.1" below.

Migrate Perforce Data from ALI 1.1

If you are upgrading from ALI version 1.1, remove and reload the Perforce data
handled by ALI as follows:

1. In the Management module, select SCM Repositories and choose the Perforce
repository.

2. From the Repositories menu, select Cleanup and select a date that removes
the most recent commit.

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 9 of 68

3. Go to the Branches tab, and for each branch:

a. Select branch details.

b. Delete the Last Change Read value.

4. From the Change Detection tab, start the synchronization.

Upgrade work items

ALI provides scripts that you must run to upgrade the SYSTEM_FIELD project table.
The scripts are in the ALI bundle in folder resources\work-items-update-scripts.
Use your database console to run the scripts.

For each project with the ALI extension enabled, run check-existence-of-has-
changeset-linkage-fields.sql to verify whether the has-changeset-linkage fields
exist. If the script result is 0, add the fields by running add-has-changeset-
linkage-fields.sql.

Configure scheduled synchronization
ALI detects changes made on preconfigured SCM repositories and build servers,
loads information about code changes and associated file builds and build artifacts
to the ALM server, and automatically creates traceability between loaded code
changes, builds, and work items (requirements, defects).

At regular intervals, the ALI scheduler runs discovery on the ALI-enabled projects
and synchronizes each project. If synchronization of a project ran more recently
than the predefined synchronization interval, the synchronization is not performed.

To configure the behavior of the ALI scheduler log in to Site Administration and
click the Site Configuration tab. Add or set the following ALM Site Administration
parameters. If the parameters do not exist, the default values are used.

Caution: Changing these values can affect server performance.

l ALI_MAX_PROJECT_SYNC_JOB. The maximum number of synchronization jobs
that can run at the same time. The default value is 5.

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 10 of 68

l ALI_PROJECT_SYNC_DISCOVERY_INTERVAL. The interval between checks to
determine if any project requires synchronization. The default value is 10
minutes.

l ALI_MIN_PROJECT_SYNC_PERIOD. The minimum time interval between
synchronizations for a project. The actual run time depends on the number of
synchronized projects and synchronization jobs. The default value is 60 minutes.

Example: For example:

1. ProjectA was synchronized at 11:30.

2. Changes were made to ProjectA at 11:45.

3. The scheduler runs a discovery check at 12:00. Result: Synchronization
is not performed for ProjectA.

4. ProjectA is going to be synchronized at 12:30 if there is a free
synchronization job available.

For more information on setting ALM configuration parameters, refer to the Setting
ALM Configuration Parameters section in the Application Lifecycle Management
Administrator Guide.

Configure TFS integration support
For full support of Microsoft Team Foundation Server (TFS) systems, you must
install the ALI TFS Services on the TFS Server.

To install the services, run the ALI TFS Services installer on the TFS server. The
installer is included in the ALI bundle. The installer sets up the environment with all
necessary validation. Install the proper ALI TFS Services Installer according to your
TFS version.

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 11 of 68

For details on supported TFS versions, see "Supported SCM systems" on page 66
and "Supported build systems" on page 67.

This section includes:

l "ALI TFS Services"
l "Upgrading from an Earlier ALI Version"
l "Moving from TFS over SvnBridge to Native TFS integration"

ALI TFS Services

ALI TFS Services include the following:

l Line Count Service: Counts changed lines within commits.
l Build Service: Provides build information.
l ALI Agent services: Services used by the ALI agent for validation of commit
messages and push code changes into ALM.

Upgrading from an Earlier ALI Version

To remove a previous version of ALI TFS Services:

1. Uninstall the previous CheckinEventService using BisSubscribe
/unsubscribe.

2. Remove from IIS any IIS Application, IIS Web Site, or IIS Application Pool related
to the previous version of the ALI TFS Services.

3. Delete the AliTfsServicesSite folder, located under C:\inetpub on the TFS
server. This folder is mapped to the previous ALI TFS Services IIS Application.

Moving from TFS over SvnBridge to Native TFS integration

TFS over SvnBridge is no longer supported. To start using the built-in
TFS integration:

1. Remove all the previous SCM repositories of the TFS over SvnBridge type that
are configured in ALM.

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 12 of 68

2. Add a new SCM repository of the TFS type for each Project Collection.

3. Add an SCM branch for each project that you had previously configured in ALI.

Application Lifecycle Intelligence
Before you begin

Application Lifecycle Intelligence (17.0) Page 13 of 68

Setting up build system integration
This chapter includes:

• Build system setup workflow 15
• Hudson/Jenkins integration 16
• ALI Hudson/Jenkins plugin deployment 16
• ALI Hudson/Jenkins plugin configuration 18

• TFS build server integration 19
• Add a build server 20
• Add build configurations 21
• Reuse SCM configurations from build configurations 22
• Set build configuration defect filters 22
• Configure build change detection 23
• Customize ALI project lists 24
• Track code issues 25

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 14 of 68

Build system setup workflow
Builds are the key deliverables of software development. ALI tracks information
about builds together with their relationships to other ALM entities.

Integration with build systems allows you to measure the impact of code changes
on software deliverables.You can see reports about what new code has been
implemented and what the impact is on the delivered project with the delta of key
metrics. For example, a certain commit caused a 5% degradation of test results.

To set up build system integration:

1. Make sure you are working with a supported build system. For details, see
"Supported build systems" on page 67.

2. Review the requirements for your build server, and perform any necessary
configuration.

For details, see:
l "Hudson/Jenkins integration" on the next page
l "TFS build server integration" on page 19

3. Add a build server to ALI. See "Add a build server" on page 20.

4. Add build configurations. See "Add build configurations" on page 21.

You can also reuse existing SCM configurations from build configurations that
are defined on the build server. See "Reuse SCM configurations from build
configurations" on page 22.

5. Set a defect filter to limit the defects displayed on the Build Report Defect
Trend graph. See "Set build configuration defect filters" on page 22.

6. Configure build change detection. See "Configure build change detection" on
page 23.

7. Customize ALI-specific project lists using ALM Project Customization. See
"Customize ALI project lists" on page 24.

8. Tag defects as code issues. See "Track code issues" on page 25.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 15 of 68

Hudson/Jenkins integration
If you are working with a Hudson/Jenkins build server, install the ALI
Hudson/Jenkins plugin, ali-hudson-plugin.hpi. The plugin is located in the ALI
bundle at agents\build-integration\hudson\.

For Perforce, TFS, or Git:

Install the Hudson/Jenkins plugins and any applicable additional ALI
Hudson/Jenkins plugins.

The Hudson/Jenkins plugins that support the use of Perforce, TFS, and Git SCMs
can be downloaded from http://hudson-ci.org or http://jenkins-ci.org. The plugins
are available in the public Hudson/Jenkins plugin repository. Support is as follows:

l SVN is supported by default.
l CVS is supported by default in Jenkins.
l CVS is supported by default in Hudson versions 2.x.

For CVS in Hudson 3.x:

Install the Hudson CVS plugin as the prerequisite for the ALI Hudson plugin.
Hudson removed the CVS plugin which was preinstalled until version 3.0 by
default. The CVS plugin can be downloaded from http://hudson-ci.org. The plugin
is available in the public Hudson plugin repository.

The additional ALI Hudson/Jenkins plug-ins are located in the ALI bundle. Install
any applicable to your specific SCM.

For details on how to install the ALI plugins for Hudson/Jenkins, see "ALI
Hudson/Jenkins plugin deployment" below below.

ALI Hudson/Jenkins plugin deployment
To install the ALI Hudson/Jenkins Plugin:

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 16 of 68

http://hudson-ci.org/
http://jenkins-ci.org/
http://hudson-ci.org/

1. In Hudson/Jenkins, open the Plugin Manager and click the Advanced tab.

2. In the Upload Plugin section, browse to ali-hudson-plugin.hpi or ali-
jenkins-plugin.hpi, located in the ALI bundle, and click upload.
l TFS: If the project source code built by Hudson/Jenkins is stored in TFS, first
install the Hudson/Jenkins TFS plug-in, downloaded from Hudson/Jenkins
and then install the ali-hudson-tfs-plugin.hpi/ali-jenkins-tfs-plugin
and the base plug-in, ali-hudson-plugin.hpi/ali-jenkins-plugin.hpi.

Note:When you define a TFS repository in ALI for source control
management, the format of the repository location includes the name
of the project collection. For details, see "Add a TFS repository" on
page 34.

Hudson/Jenkins does not require the name of the project collection,
but it must be defined on the Hudson/Jenkins server in order to work
successfully with ALI. On the Hudson/Jenkins server, make sure the
path to the TFS server includes the project collection name in Source
Code Management > Server URL.

l Perforce: If the project source code built by Hudson/Jenkins is stored in
Perforce, first install the Hudson/Jenkins Perforce plugin, downloaded from
Hudson/Jenkins and then install the ali-hudson-perforce-
plugin.hpi/ali-jenkins-perforce-plugin.hpi and the base ali-hudson-
plugin.hpi/ali-jenkins-plugin.hpi.

l Git: If the project source code built by Hudson/Jenkins is stored in Git, first
install the Hudson/Jenkins Git plugin, downloaded from Hudson/Jenkins and
then, install the ali-hudson-git-plugin.hpi/ali-jenkins-git-
plugin.hpi and the base ali-hudson-plugin.hpi/ali-jenkins-
plugin.hpi.

Note: The ALI Git plugin does not support a branch name with
wildcards. On the Hudson/Jenkins server, make sure there is no
wildcard defined in Source Code Management > Branches to build.

3. After uploading the plugins, restart the Hudson/Jenkins server to enforce
changes.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 17 of 68

4. Confirm that the installed plugins are listed in the Installed tab in the Plugin
Manager.

5. Confirm that the ALI Integration link is visible in the Hudson/Jenkins left-side
menu. Clicking this link displays capabilities provided by the plugin.

For more details on how to install and work with the Hudson/Jenkins plugins, see
the Hudson/Jenkins system documentation.

ALI Hudson/Jenkins plugin configuration
Access the ALI Hudson plugin global configuration from the global Configure
System. Access the job-specific configuration from the job.

All properties specified in the global configuration can be overridden for a
particular job.

For detailed descriptions of the properties , see the ALI integration plugin on the
Hudson/Jenkins server.

To set the global configuration:

FromManage Hudson/Jenkins – Configure System, select ALI Integration. You
can configure the following options:

l Include the credentials in the SCM configuration - Specify if the user name
and password should be included in the SCM repository descriptor. If this
security model is enabled, the user must also have "extended read" permissions
for the credentials to be listed.

Caution: If this option is enabled, the credentials for the SCM repository
associated with build configurations are exposed on REST endpoints as
plain text.

l Update build information in ALM - If this option is enabled, the ALM server is
notified when a build is started and when it is finished.

If you want to use the push mechanism and also want to specify ALM properties
for individual jobs, this option must be enabled

l Hudson/Jenkins URL - Specify the URL of the Hudson or Jenkins server.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 18 of 68

Note: If there are problems with the Build System detail links, ensure that
the correct Hudson/Jenkins server URL is entered.

To set a configuration for a particular job:

From the Configure link on left side menu for the job, select the ALI Integration
option to enable ALI integration for the job.

l Test sources mapping pattern - Set test source locations based on actual test
results. For details, see the ALI integration plugin help.

l ALM configuration – Overwrite the global ALI configuration properties. Update
build information in ALM for the build job.

l NCover - NCover code coverage for .NET configurations. The NCover report
XMLs specifies the generated raw XML report files, such as
myproject/target/coverage-reports/*.xml. The basedir of the fileset is the
root workspace.

l Force.com – For details, see "Setting up Force.com integration" on page 48.

TFS build server integration
TFS Build Features and Limitations

TFS build server support exposes data on all the defined build definitions, their
builds, code changes, test results, and code coverage per build. In addition,
information on all the defined SCM repositories per build definition is exposed. The
build statistics are exposed without any limitations except test and code coverage
results.

To access the test results and code coverage results required by ALI for the build
definition, the definition must meet the following criteria:

l The build definition and build must have a “drop folder” defined. The build must
also have a log folder.

l The build must clean the workspace at the beginning of the build. All code
changes must be checked out.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 19 of 68

l Results of the test and code coverage frameworks that were used must be
stored as attachments in the *.trx and *.coverage files, respectively.

l The TFS build server configuration does not support the push mechanism. All
builds are stored in ALM using the polling mechanism.

l TFS 2015 Update 3/2017/2018. To support this build system, perform the
following steps:

a. Set Load User Profile value to true.

i. Open IIS Manager and go to Application Pools.

ii. Right clickMicro Focus ALI TFS Services Application Pool and select
Advanced Settings.

iii. Set Load User Profile value to true.

b. Enable Basic Authentication for Team Foundation Server.

i. In IIS Manager go to [IIS SERVER]\Sites\Team Foundation Server\tfs.

ii. Open Authentication section.

iii. Set Basic Authentication to Enabled.

If Basic Authentication does not exist, you need to enable basic
authentication on your IIS Server. For details, see
https://www.iis.net/configreference/system.webserver/security/authenti
cation/basicauthentication.

Add a build server
To add a Build Server:

1. Log in to ALM with Administrator privileges and under the Management tab
click Build Servers to open the Servers page.

2. Click New Server, and from the drop down list select a Build Server type and
click OK.

3. In the New Build Server dialog box, fill in the details.

Note:

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 20 of 68

note: If "Basic Authentication" doesn't exist, you need to enable Basic authentication on your IIS Server installation. For details, see https://www.iis.net/configreference/system.webserver/security/authentication/basicauthentication.
note: If "Basic Authentication" doesn't exist, you need to enable Basic authentication on your IIS Server installation. For details, see https://www.iis.net/configreference/system.webserver/security/authentication/basicauthentication.

l The location is a full path to the server such as http://xx.xx.xxx.xxx:xxxx/yyyy.
Get the location from your system administrator. The /yyyy segment is
optional. It is for the context on which the server is running (such as on
a Jenkins server).

l The build server location is the URL of the service which is part of ALI
TFS Services which you download and install on the TFS server. The
service installer is part of ALI bundle. As the TFS build server location,
use the URL in the following format for each project collection:
http://tfsServer:tfsPort/tfsali/Service/BuildService.svc/ali/ProjectCollectionName.

Where:
o tfsServer – address of the TFS server
o tfsPort – port of the TFS server
o tfsali – name of the application on the IIS Site defined during
installation of ALI TFS Services

o ProjectCollectionName – name of project collection

4. Select the Change Detection tab and optionally:
l Select Read changes from build server if required. Changes will be read
periodically from your SCM repository.

l Select Receive builds transmitted by build server agent(s) if required. See
"Configure build change detection" on page 23 for more information.

Add build configurations
To add a Build Configuration:

1. In the Build Configurations tab, click New Build Configuration.

2. Select a build configuration from the list and click OK to open the details
window.

The list contains the unused configurations of the governed server.

The list contains only the configurations for Hudson/Jenkins jobs with ALI
integration enabled.

3. Click the Release drop down list and select an associated release.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 21 of 68

4. Click the Build Configuration drop down list and select a build type. This value
allows you to filter builds in the Builds module under the Development tab.

5. Optionally:
l Enable the configuration. If the build configuration is enabled, new builds
from the build system are loaded.

l Set the configuration as default. Default build configurations are used for
computation of statistics displayed for the associated release.

Reuse SCM configurations from build
configurations
Existing build configurations and their SCM repository configuration settings
stored in the build server can be applied to new build configurations in ALM.

To apply an existing SCM build configuration:

1. In the Build Servers page of the Management module, select a server.

2. Select the Build Configurations tab.

3. Select a configuration and click it.

4. In the Build Configuration Detailswindow, select the SCM tab to display the
available repositories and branches.

5. Select the required repositories and/or branches and click the + button to
apply them to the SCM configuration. Clicking the details button displays the
repository or branch details pop-up window of the selection.

The status message next to the repository or branch location shows whether
the repository or branch is already defined.

Set build configuration defect filters
Setting this filter reduces the input set of open and new defects associated with
the release shown on the Build Report Defect Trend graph for this build
configuration. Do not specify defect status and target release in this filter.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 22 of 68

To apply a defect filter to a build configuration:

1. In the Build Servers page of the Management module, select a server.

2. Select the Build Configurations tab.

3. Click a configuration name to open the Build Configuration Detailswindow.

4. Select Defect Filter.

5. Click Change Defect Filter to open the filter defect window.

6. Add or remove a filter condition and click OK to apply the condition.

To remove a defect filter from a particular build configuration:

Click Clear Defect Filter and click Yes to confirm.

Configure build change detection
When ALI detects new builds on build servers, it loads new status information,
associated code changes, and optionally, the results of unit tests, and code
coverage. Traceability is automatically created between builds, code changes, and
work items (defects, requirements). As with SCM integration, ALI supports two
detection mechanisms; the polling mechanism and the push mechanism.

Set Change Detection settings in the Change Detection view if you are defining a
new build server . For an existing server definition,use the Change Detection Tab.

Polling:

Polling means that ALI periodically checks for new builds in the build server and
loads them on the ALM server.

To activate the polling mechanism, set the Read changes from build server option
on the Change Detection tab. To load changes on demand, use the Synchronize
command. To configure scheduling for automatic load changes, see "Configure
scheduled synchronization" on page 10.

Push:

To start the plugin listening on the build server, set the Update build information in
ALM option in the ALI integration plugin on the build server. See "ALI

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 23 of 68

Hudson/Jenkins plugin configuration" on page 18. When a new build is starting, the
plugin pushes information about the build to the ALM server. When the build
completes, the status and other data are updated on the ALM server.

To activate the push mechanism, set the Receive builds option transmitted by build
server agent(s) option on the Change Detection tab.

Customize ALI project lists
In ALM Project Customization, in the Project Lists page, you can customize the
following default ALI project lists:

ALM
Project List Description

ALI Build
Category

The values available in the Build Category field.

ALI Closed
Status

When a defect's Status field is set to one of the values defined in
this list, ALI considers the defect closed. You can set a value for
Closed In Build only if the defect status a member of the Closed
Status list. The Closed Status values are a subset of the Status
project list.

ALI Code
Issue
Definition

The values that mark a defect as a code issue.

For more details on code issues, see "Track code issues" on the
next page.

ALI QA
Status

The possible values for a build's QA Status.

ALI
Reported
Severity

The values available for links to code issues, displayed in the
Development Activity tab in the Requirements or Defects modules,
and in Build Details. The values must be the same values or a
subset of the values of the Priority project list.

For more details on customizing project lists, refer to theMicro Focus Application
Lifecycle Management Administrator Guide.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 24 of 68

Track code issues
If a problem is identified in your source code, you can track it in the defects,
requirements, and builds that are associated with the problematic code.

When you create a new defect to fix the problematic code, ALI can tag the defect
as a code issue, based on criteria that you set. After you configure code issue
tracking in your project, you can view links to code issue defects from the related
Requirement, Defect, and Build Details dialog boxes.

To configure code issue tracking in your ALM project:

1. Prerequisite: Customize the default ALI project lists. For details, see
"Customize ALI project lists" on the previous page.

2. In Project Customization, in the Project Entities page, create a user-defined
field to use for code issue tracking. Supported field types are String or Lookup
List.

For more details on creating user-defined fields, refer to theMicro Focus
Application Lifecycle Management User Guide.

3. In the Project Lists page, in the ALI Code Issue Definition project list:

a. Add the value of the user-defined field's Name field as the only list item.

b. Select a value from the user-defined field you created in Step 2 to use to
tag the defect as a code issue. Add this value as a sub-item.

Example: Example:

Create a user-defined field. For example, Defect Category. This field might
have values such as Bug, Issue, Enhancement, Fortify.

In the ALI Code Issue Definition project list, add the user-defined field's
Name field as the only list item. For example, BG_USER_05.

Add the value of the user-defined field that you want to use to tag the defect
as a code issue as a sub-item in the list. For example, Fortify.

To track code issues:

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 25 of 68

1. Prerequisite: To identify a defect as a code issue of a requirement, defect, or
build, the defect must meet the following conditions:
l The defect is not closed. A defect is closed if the defect Status is one of the
values defined in the ALI Closed Status project list.

l The defect’s Priority is one of the values defined in the ALI Reported
Severity project list.

2. Tag the defect as a code issue: In the Defect Details dialog box, fill in the user-
defined field that was created above for code issue tracking.

3. Connect the defect to the defect, requirement, or build associated with the
problematic code change:

a. In the Defect Details dialog box, select the appropriate value from the ALI
Caused by Code Change field, which lists code changes and commit
messages.

b. In the Defect Details dialog box, select a value in the Detected in Build field.

Example: Example:

1. You commit a code change related to a specific defect, requirement, or
build. For example, a code change you made when fixing Defect 124.

2. A reviewer, or the third-party tool you are using for code analysis,
recognizes that the code change causes a problem. You create a new
defect, making sure to set the following two fields:
a. In your code issue user-defined field, Defect Category in this example,

select the appropriate value. In this example, you would select Fortify.
b. In the Caused by Code Change field, locate and select the code

change that caused this issue. For example, Defect #124 : Fixing
authentication issue.

Results:

The new, code issue defect is listed in the associated Build, Requirement, or
Defect Details dialog boxes.

Application Lifecycle Intelligence
Setting up build system integration

Application Lifecycle Intelligence (17.0) Page 26 of 68

Setting up source control management
system integration
This chapter includes:

• SCM setup workflow 28
• SCM integration prerequisites and limitations 29
• SCM agents 29

• Add SCM repositories 31
• Add a Subversion repository 32
• Add a CVS repository 32
• Add a Perforce repository 33
• Add a TFS repository 34
• Add a Git repository 35

• Set an external repository viewer 36
• Set commit patterns 39
• Associate code changes with alternative identifiers 42

• Add branches and associate with release 43
• Set branch check-in policies 44
• Configure code change detection 46

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 27 of 68

SCM setup workflow
Before ALI can report on code changes and link them to ALM entities, you must set
up source control management system (SCM) integration.

To set up SCM integration:

1. Make sure you are working with a supported SCM system. For details, see
""Supported SCM systems" on page 66.

2. Review prerequisites.

See "SCM integration prerequisites and limitations" on the next page.

3. Add repositories.

See "Add SCM repositories" on page 31.

4. [Optional] Install the agents for your SCM.

See "SCM agents" on the next page.

5. [Optional] Set an external repository viewer.

See "Set an external repository viewer" on page 36.

6. [Optional] Require a particular format for check-in messages. See "Set commit
patterns" on page 39.

7. Add branches and associate them with a release.

See "Add branches and associate with release" on page 43.

8. [Optional] Control commits at the level of an SCM branch by setting check-in
policies and locking for a branch. See "Set branch check-in policies" on
page 44.

9. Configure detection of changes in source.

See "Configure code change detection" on page 46.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 28 of 68

SCM integration prerequisites and
limitations
Application Lifecycle Intelligence (ALI) supports Subversion, Perforce, GIT, and
CVS systems natively. However, if check-in policies and/or the push mechanism is
required, SCM agents need to be installed on the SCM System. For details, see
"SCM agents" below.

TFS systems are supported natively. To support the push mechanism, install the
TFS agent web services. Furthermore, without the TFS agent web services, all
code changes are displayed with “0” in the changed lines field.

Prerequisites:

MS PowerShell 2.0 or later must be installed on Windows and enabled to run
scripts. Linux/Unix agent scripts use BASH. The BASH version must be 4.0 or later
to support pushing into multiple repositories.

Limitations:

Git: ALI does not support the Git functionality of changing the history of commits. If
commit history is changed in a Git repository, you must reload the entire commit
history tracked by ALI for all affected branches. To reload the commit history,
remove these branches and add them again.

Localization: InManagement > Build Servers > Build configuration > SCM: The
SVN branch path is displayed in URL encoding when the path contains non-English
characters. This causes the automatic SCM configuration not to function properly.

Workaround: You have to configure repositories and branches directly in
Management > SCM Repositoriesmanually.

SCM agents
An ALI agent is a set of scripts or proprietary applications installed on an SCM
server. The ALI agent listens to activity on the SCM server, reports the activity to
ALI, and supports the integration with ALI. For example, when a change is

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 29 of 68

committed to a configured repository and branch, the agent checks whether the
commit is allowed according to your policies, and pushes the code change to the
ALM server if the commit is allowed.

For details on configuring SCM agents, see the readme.txt file, located in the
specific agent archive inside the main ALI distribution archive.

For more details on working with SCM agents, see the following sections:

l "Configure code change detection" on page 46
l "Set branch check-in policies" on page 44

SVN Agent for Linux

agents\scm-integration\unix-linux\scm-agent-subversion.tgz

SVN Agent for Windows

agents\scm-integration\windows\scm-agent-subversion.zip

CVS Agent for Linux

agents\scm-integration\unix-linux\scm-agent-cvs.tgz

CVS Agent for Windows

agents\scm-integration\windows\scm-agent-cvs.zip

TFS Services for Windows

agents\scm-integration\tfs\windows\ali-tfs-services.zip

agents\scm-integration\tfs\windows\ali-tfs-services-tfs2015-
support.zip

agents\scm-integration\tfs\windows\ali-tfs-services-tfs2017-
support.zip

agents\scm-integration\tfs\windows\ali-tfs-services-tfs2018-

support.zip

Perforce Agent for Linux

agents\scm-integration\unix-linux\scm-agent-perforce.tgz

Perforce Agent for Windows

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 30 of 68

agents\scm-integration\windows\scm-agent-perforce.zip

Git Agent for Linux

agents\scm-integration\unix-linux\scm-agent-git.tgz

Git Agent for Windows

agents\scm-integration\windows\scm-agent-git.zip

Add SCM repositories
Configure SCM repositories to enable loading code changes from SCM systems
and to enable automatic traceability of:

l work items (requirements/defects)
l code changes
l defined releases

This section includes:

• Add a Subversion repository 32
• Add a CVS repository 32
• Add a Perforce repository 33
• Add a TFS repository 34
• Add a Git repository 35

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 31 of 68

Add a Subversion repository
For the list of supported repositories, see "Supported SCM systems" on page 66.

To add a repository:

1. Log in to ALM with Administrator privileges. On the ALM sidebar, under
Management, select SCM Repositories to open the Repositories page.

2. Click New Repository. From the drop down list, select an SCM type and click
OK.

3. In the New SCM Repositorywindow, fill in the fields.

The location is the full path to the repository. For example,
http://host/svn/repo. Get the location from your system administrator.

The repository location points to the actual repository root. Branches are later
used for specifying paths within the repository. If an SVN URL has an unknown
root, use the "svn info <URL>" command to find the root.

To edit a repository:

1. Select a repository in the left pane of the Repository page.

2. Edit the fields in the right pane, using the tabs to access different groups of
settings.

3. If a repository property requires modification, select it and click the Edit
Property button. In the Edit Propertywindow, add a value and click OK. The
properties are in bottom area of the details tab.

Add a CVS repository
For the list of supported repositories, see "Supported SCM systems" on page 66.

To add a repository:

1. Log in to ALM with Administrator privileges. On the ALM sidebar, under
Management, select SCM Repositories to open the Repositories page.

2. Click New Repository. From the drop down list, select an SCM type and click
OK.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 32 of 68

3. In the New SCM Repositorywindow, fill in the fields.

The location is the full hostname of the CVS server. Get the hostname from
your system administrator.

In the alias property, enter the full CVSROOT exactly as it is configured in your
build system. For example, pserver:username:password@host/cvsrepo. The
CVSRoot property is mandatory for the pserver protocol.

4. CVS repositories require the CVS protocols pserver and initial date to start
loading code changes. The CVS root should also be specified, but it is not
mandatory.

To edit a repository:

1. Select a repository in the left pane of the Repository page.

2. Edit the fields in the right pane, using the tabs to access different groups of
settings.

3. If a repository property requires modification, select it and click the Edit
Property button. In the Edit Propertywindow, add a value and click OK. The
properties are in bottom area of the details tab.

Add a Perforce repository
For the list of supported repositories, see "Supported SCM systems" on page 66.

To add a repository:

1. Log in to ALM with Administrator privileges. On the ALM sidebar, under
Management, select SCM Repositories to open the Repositories page.

2. Click New Repository. From the drop down list, select an SCM type and click
OK.

3. In the New SCM Repositorywindow, fill in the fields.

ALI repositories are equivalent to Perforce Depots. The location of the
repository is the host name and port of the Perforce Server, and the Depot
name. The format is host:port//depot_name.

To edit a repository:

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 33 of 68

1. Select a repository in the left pane of the Repository page.

2. Edit the fields in the right pane, using the tabs to access different groups of
settings.

3. If a repository property requires modification, select it and click the Edit
Property button. In the Edit Propertywindow, add a value and click OK. The
properties are in bottom area of the details tab.

Add a TFS repository
For the list of supported repositories, see "Supported SCM systems" on page 66.

To add a repository:

1. Log in to ALM with Administrator privileges. On the ALM sidebar, under
Management, select SCM Repositories to open the Repositories page.

2. Click New Repository. From the drop down list, select an SCM type and click
OK.

3. In the New SCM Repositorywindow, fill in the fields.

ALI repositories are equivalent to TFS Project Collections. The location of the
repository is the host name and port of the TFS Server, and the path to the
Project Collection. The format is http://host:port/tfs/path_to_project_

collection.

If the line count service URL is different than the default value
http://tfsServer:tfsPort/tfsali/Service/LineCountService.svc, then
you must enter the line count service URL. If it is not set, the branch is created
with warnings and all loaded code changes are stored with 0 changed lines.
The line count service is part of the ALI TFS SCM agents which you download
and install on the TFS Server. The ALI TFS Services are part of the ALI bundle.

Note: . The previous service, CountLinesService.svc, is not supported as
of ALI version 2.0.0.139876.

To edit a repository:

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 34 of 68

1. Select a repository in the left pane of the Repository page.

2. Edit the fields in the right pane, using the tabs to access different groups of
settings.

3. If a repository property requires modification, select it and click the Edit
Property button. In the Edit Propertywindow, add a value and click OK. The
properties are in bottom area of the details tab.

Add a Git repository
For the list of supported repositories, see "Supported SCM systems" on page 66.

To add a repository:

1. Log in to ALM with Administrator privileges. On the ALM sidebar, under
Management, select SCM Repositories to open the Repositories page.

2. Click New Repository. From the drop down list, select an SCM type and click
OK.

3. In the New SCM Repositorywindow, fill in the fields.

The repository location is the entire Git URL. For example:
https://github.com/YourAccount/YourRepository.git. Do not include the
user name in the URL:
ssh://git@server1.abc.com/home/git/gitrepo.git. Enter the user
name in the Username field.

Supported protocols include http(s), Git, and ssh.

For ssh authentication using a private key, use the Security Key section.

Note: If you are facing connection issues to github.com, make sure the
proxy is set in ALM.

To set the ALM proxy, add the following line into the wrapper.conf file,
located in the ALM application deployment folder (C:\ProgramData\Micro
Focus\ALM\):

wrapper.java.additional.[nextFreeNumber]=-Dhttp.proxyHost=
[proxyServerUrl] -Dhttp.proxyPort=[proxyPort] -

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 35 of 68

Dhttps.proxyHost=[httpsProxyServerUrl] -Dhttps.proxyPort=
[httpsProxyPort]

Where:
l [nextFreeNumber] is next unused number of parameter of the
wrapper.conf

l [proxyServerUrl] is URL of the proxy server
l [proxyPort] is a port number of HTTP
l [httpsProxyServerUrl] is URL of the HTTPS proxy server (optional
parameter)

l [httpsProxyPort] is a port number of HTTPS proxy (optional
parameter)

4. If you configured the GitHub repository, select the "GitHub view diff/file link
templates" property to use the native GitHub file view and the diff view web
tools.

To edit a repository:

1. Select a repository in the left pane of the Repository page.

2. Edit the fields in the right pane, using the tabs to access different groups of
settings.

3. If a repository property requires modification, select it and click the Edit
Property button. In the Edit Propertywindow, add a value and click OK. The
properties are in bottom area of the details tab.

Set an external repository viewer
ALI provides a built-in repository viewer for viewing file diffs and details. You can
also use an external repository viewer, such as ViewVC.

If you use an external viewer, the following properties are entered when
configuring an SCM repository or can be changed from the details tab of an
existing repository.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 36 of 68

Template for diff links - template for a link pointing to a diff view of a given file in a
repository viewing system (e.g. ViewVC). Allows you to create links from the ALI
code changes table in the UI. Each file in the code change contains a link displaying
a diff view (revision in current code change to its previous revision). The template
can contain tags/variables which are expanded at run time from the context of the
currently selected code change in the UI.

Tags/Variables that may be substituted/expanded:

${filePath} ... path of file within repository.

${revision} ... revision in current code change.

${fromRevision} ... previous revision to revision in current code change.

${fromFilePath} ... in case of copying/moving its source location.

Note: The following address enables you to view the diff of two files stored
in:

TFS

http://tfshost:tfsport/tfs/_COLLECTION_/_
versionControl/changesets#opath=${fromFilePath}&oversion=${fromRe
vision}&mpath=${filePath}&mversion=${revision}&_a=compare

Where:
l tfshost: address of the TFS server
l tfsport: port where TFS server is running
l _COLLECTION_: name of the collection where the requested file's project
is a member

l opath: full path to the original source file (including '$' symbol and project
name) e.g.$/ali-replica/alik/pom.xml

l ocs: TFS original code change ID
l oversion: TFS original code change ID
l mpath: full path to the modified source file (including '$' symbol and
project name) e.g.$/ali-replica/alik/pom.xml

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 37 of 68

l mcs: TFS modified code change ID
l mversion: TFS modified code change ID

Template for file links - template for a link pointing to a file view of a given file in a
repository viewing system (e.g. ViewVC). Allows you to create links from the ALI
code change table in the UI. Each file in the code change contains a link displaying
file view (file text content of a given revision in the scope of current code change).
The template may contain tags/variables which are expanded at runtime from the
context of the currently selected code changein the UI.

Tags/Variables that may be substituted/expanded:

${filePath} ... path of file within repository.

${revision} ... revision in current code change.

Note: The following address enables you to view the source of files stored in
TFS:

TFS

http://tfshost:tfsport/tfs/_COLLECTION_/_
versionControl/changesets#cs=${revision}&path=${filePath}&version
=${revision}&_a=contents

Where:
l tfshost: address of the TFS server
l tfsport: port where TFS server is running
l _COLLECTION_ : name of the collection where the requested file's project
is a member

l path: full path to the source file (including '$' symbol and project name)
e.g. $/alireplica/alik/pom.xml

l cs: TFS code change ID
l version: TFS code change ID

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 38 of 68

Set commit patterns
Detecting and maintaining traceability between SCM changes and ALM
requirements and defects is based on the commit message entered in the SCM
system. ALI enables you to define patterns for the commit message that include
requirement or defect IDs.

To set commit patterns:

1. Choose the Commit Pattern view while setting up a new repository, or open
the Commit Pattern tab of an existing repository.

2. Select either Basic or Advanced to choose how to define the pattern.

3. If you use Basic, add the keywords, ID prefix characters and other options as
described immediately below.

4. If you use Advanced, edit the default pattern as described below under
"Advanced pattern definition" on the next page.

Basic pattern definition:

1. Add keywords for Defects or Requirements by clicking the Add button,
entering a keyword or phrase, and clicking OK. The keywords mark a commit
as related to either a defect or a requirement.

To associate code changes with alternative identifiers, such as IDs from an
external tracking tool, see "Associate code changes with alternative identifiers"
on page 42.

2. Add an ID Prefix characters to the pattern by typing in the characters. Select
Optional if the prefix is not required.

3. Click theMore Options button to add the following options:
l Include Default Tasktop Commit Pattern. If selected, when the Taskop
plugin is integrated with ALM, Tasktop generates default commit messages
according to a pattern that is recognized by ALI.

l Case Sensitivity Commit Messages. If selected, commit messages patterns
are case sensitive.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 39 of 68

l Multiple Defects or Requirements separation markup. Type in the separator
between multiple defects or requirements in a commit message.

l Keyword location in commit message. Select whether keywords are
recognized only at the beginning of the commit message or anywhere within
the message.

l User commit message separator. Type a character to separate the defects
or requirements specification from a free-text user commit message.

4. Navigate away from the tab to commit the configuration.

Example of options in a commit message: The message: fixing defect
#100, #101: fix caching and enhance functionality

Elements of the message:
l fixing defect - the defect keyword
l #100 - defect ID prefix and defect ID
l “.” - multiple defects separator
l “:” - user commit message separator
l fix caching and enhance functionality - free-text user commit message

Advanced pattern definition

1. Add to or change the default code pattern.

2. Test the modified code by clicking Test Against Existing Commits.

3. Case Sensitive enforces case sensitivity for messages.

4. You can test a message by typing it into the Custom Commit Message Test
box.

5. Navigate away from the tab to commit the configuration.

The Restore Defaults button removes any changes and replaces the default
keywords.

Example: Examples of advanced configurations:

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 40 of 68

1. Example 1
a. Pattern
([fixing] REGEX('defects?') IDLIST(DEFECT) | [implementing] REGEX
(requirements?') IDLIST(REQ)) : TEXT

b. Example message:
"fixing defect #56721: something really serious was
fixed"

"defects #57893,#61432: division by zero"

"requirement #1: domains"

2. Example 2
a. Pattern

(UNTIL(RE '((BUG)|(REQ))#') (IDLIST(DEFECT lead='((BUG)?#)?'
sep=',') | IDLIST(REQ lead='((REQ)?#)?' sep=','))){0,} [TEXT]

b. Example message:
"This commit fixes BUG#1,#2 and implements
REQ#4,REQ#5 making the product faster (resolving
BUG#7)."

c. This pattern matches all inputs and extracts of any found 'BUG#' and
'REQ#' patterns. Such an open pattern may not be suitable for
enforcing common policy, but it can be useful when data from legacy
repositories are loaded in the "read-only" mode, e.g. for reporting
purposes.

3. Example 3
a. Tasktop Pattern

(LISTITEM('Bug Status') - WORD IDLIST(DEFECT lead='DEF' sep='') |
Incomplete - WORD IDLIST(REQ lead='REQ' sep='')) : TEXT

b. Matches default Tasktop messages such as:
"OPEN - task DEF10:
http://host:9090/qcbin;DEFAULT;ALI_DEV-DEF10"

"Incomplete - task REQ42:
http://host:9090/qcbin;DEFAULT;ALI_DEV-REQ42"

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 41 of 68

Associate code changes with alternative
identifiers
By default, you can link code changes to ALM requirements or defects based on
their ALM entity IDs. If you maintain another set of identifiers for your requirements
or defects, you can associate code changes with these alternative identifiers.

For example, if you synchronize your projects with an external defect tracking tool,
you can reference the identifiers generated by that tool in your commit messages.
ALM can then use the alternative identifier to link the code change to an ALM
requirement or defect.

To associate code changes with alternative identifiers:

1. Prerequisites:

a. The alternative IDs must be stored in an ALM user-defined field. The
supported field types are Number and String.

b. The alternative ID must be unique. The code change is linked to the first
matching ALM entity.

2. In the SCM Repositories module, select a repository and click the Commit
Pattern tab. Make sure the Basic view is selected.

3. In the Defects or Requirements section, click Add.

4. In the Add keyword dialog box:

a. In the Keyword field, enter a keyword or phrase to indicate that the commit
message is using an alternative identifier. For example, Resolve Jira

issue. Developers must include this keyword or phrase in their commit
messages.

b. In the Field list, select the user-defined field that stores the alternative
identifiers.

When a commit message contains the keyword or phrase defined here, ALM
looks at the user-defined field to locate the entity you want to associate with
the code change.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 42 of 68

Add branches and associate with release
This section includes:

l To add a new branch
l To associate a branch with a release

To add a new branch:

1. On the ALM sidebar, under Management, select SCM Repositories, and open
the Branches tab.

Click Add .

2. Enter a path for the branch, and optionally, enter a Branch and a Last Change
Read property if required for the repository type, according to the following
guidelines:
l Do not define the Branch property for SVN, TFS, or Perforce.
l The Last Change Read field value may be one of the following:

o For a CVS repository, the Last Change Read field should contain
date/time.

o For all other repositories, the Last Change Read field should contain the
revision number.

To read all change sets from the given branch, leave this field empty.
l CVS:
Branch name only has meaning for some CVS repositories.

l Perforce:
Set the branch path without the Depot name. For example, if the branch is
located at //depot/HelloWorld/releases/release-1.0/... then the path
should be to /HelloWorld/releases/release-1.0. Do not set the
parameter branch even though the branch is named.

l TFS:
Use the branch path to the project path without '$'. For example, if the
project is located at $/TestApp, then branch path should be /TestApp. The

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 43 of 68

branch path must contain only the name of the project. Paths containing
subfolders are not supported.

l Git:
Set the branch path to “/”. The branch should be set to the real Git branch
name. Use only the simple branch name in the format "master", and not
"refs/head/master".

3. Click Submit to test the link and add the branch.

To associate a branch with a release:

1. Open the SCM Branch Details window by either clicking on the path of the
branch or the Details button.

2. Click Add and select the release in the drop down menu.

3. By default, the Start Date and End Date are taken from the release. They can
be changed by clicking in the date field and typing in a required date.

Code Changes from the branch in the given time period are associated with the
specified release. These sets are visible in the Code Changes module when
selecting the specified release.

More than one release can be associated with a branch. Generally, releases
associated with a branch have different time periods.

Set branch check-in policies
You can restrict check-ins on a branch according to several different properties of
the check-in. You can use locking for more specific permissions and restrictions.

The check-in policy feature requires the installation of an agent. For details, see
"SCM agents" on page 29.

Limitations:

l These features are not supported for a Git repository. Settings are hidden.
l When setting up enforcement to allow only selected users, the commit message
must match the defined pattern even if the corresponding option is not selected
in the UI.

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 44 of 68

l Localization. Enforcement messages displayed in the SCM client can be garbled
when your environment encoding differs the from encoding on the SCM server.

Workaround: Set your client encoding to match the SCM server encoding.

To specify check-in policies for a branch:

1. In the left pane of the SCM Branch Detailswindow, click Enforcement.

2. Select from the following options on the Check-in Policies tab:
l Commit message must match defined pattern. This is the pattern commit
messages must match for the check-in to be allowed by the agent.

l Code Change refers to a Requirement. If selected, a commit must refer to a
requirement.
o Has Requirement Type. If you select this option, then select the
requirement types from the drop-down list, Only check-ins associated
with requirements of the selected types are allowed by the agent.

o Has Priority. If you select this option, then select priorities from the drop-
down list, only check-ins associated with requirements of the selected
priorities are allowed by the agent.

l Code Change refers to a Defect. If selected, a commit must refer to a
defect.
o With Severity of. If you select this option, then select severities from the
drop-down list, only check-ins associated with defects of the selected
severities are allowed by the agent.

l Add this note to the system message when a Commit is blocked. Type a
custom system message to send to a user when a commit is blocked. ALI
blocks a user from committing changes according to the options specified in
the Check-in Policies tab.

To specify locking policies for a branch:

On the Locking Policies tab you can restrict check-ins on a branch using the
following options:

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 45 of 68

l Disallow commits except for the following. Select to disallow commits on the
given branch. You can specify the following exceptions:
l Allow Users. A list of users allowed to commit to the branch.Type in the user
names of SCM users who are allowed to commit.

l Allow Defects. A list of defects. If a commit is associated with these defects,
it is allowed. Click Add defect and type a defect ID. To remove a defect from
the list, select the row and click Remove Defect.

l Add this note to the system message when a Commit is blocked. Type a
custom system message to send to a user when a commit is blocked.

Configure code change detection
ALI detects changes made to SCM repositories and associates the code changes
with work items, such as requirements and defects. ALI supports two change
detection mechanisms: poll and push.

When polling is enabled, ALI periodically checks for new changes in the given SCM
repository. Polling operates without SCM agents.

When the push mechanism is enabled, an agent on the SCM system detects
changes. When a change is committed to the repository and branch, the agent
checks the policies. If the commit is allowed, that agent pushes the code change
data to ALM.

To set change detection:

l While setting up a new repository, use the Change Detection view in the New
SCM Repository dialog box.

l For an existing repository, select the repository in the SCM Repositories module,
and click the Change Detection tab.

Select the detection options:

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 46 of 68

Option Comment

Read changes
from SCM

Select this option to enable polling.

To configure scheduling for automatic load changes, see
"Configure scheduled synchronization" on page 10.

Immediate readings can be forced by clicking the
Synchronize button.

The synchronize process can be monitored using the Task
Manager tool of ALM found under the Tools menu.

Receive changes
transmitted by
SCM Agent(s)

Select this option to enable pushing changes.

If SCM agents have been set up, changes begin to be
processed immediately when this option is selected. For
details, see "Supported SCM systems" on page 66

Application Lifecycle Intelligence
Setting up source control management system integration

Application Lifecycle Intelligence (17.0) Page 47 of 68

Setting up Force.com integration
Teams developing for the Force.com platform can benefit from features that ALI
brings to standard development. Although the source code is stored, compiled,
and tested in the cloud, ALI establishes traceability between code, work items
(requirements and defects), builds, and build metrics (test results and coverage).

This chapter includes:

• Prerequisites 49
• Set up project deployment, testing, and report generation 49
• Configure Hudson/Jenkins - Force.com 52

Application Lifecycle Intelligence
Setting up Force.com integration

Application Lifecycle Intelligence (17.0) Page 48 of 68

Prerequisites
Integration between Force.com and ALI requires:

l Make sure you are working with a supported version. For details, see "Supported
Force.com versions" on page 68.

l Force.com source code must be stored in an SCM system. For details, see
"Supported SCM systems" on page 66.

l Hudson or Jenkins plugins must be installed.
l Hudson/Jenkins plugin supporting the use of SCM.
l ALI Hudson plugin//ALI Jenkins plugin (ali-hudson-plugin.hpi/ali-
jenkins-plugin.hpi from ali-bundle).

l ALI Hudson/Jenkins Force.com plugins (ali-hudson-salesforce-
plugin.hpi/ali-jenkins-salesforce-plugin.hpi from ali-bundle)

See "ALI Hudson/Jenkins plugin deployment" on page 16.
l A build management server to deploy source code to the integration/staging
environment must be configured.

l Apache Ant must be installed.
l The force-deploy-task must be installed. The task is located in the ALI archive
(/tools/force-deploy-task/force-deploy-task-bundle.zip. Unpack the zip
file to <ant_install_dir>/lib).

Set up project deployment, testing, and
report generation
Deployment of source codes, testing, and report generation is run by an Ant task.
The required class for the deploy task is installed as part of the force-deploy-task.
See "Prerequisites" above.

Define the task in an Ant build script <Force.com project root>\build.xml. Add the
task to an existing build.xml or create the file.

Application Lifecycle Intelligence
Setting up Force.com integration

Application Lifecycle Intelligence (17.0) Page 49 of 68

Example of running all tests:

The following example deploys source code to a configured Force.com
environment and runs all tests. Because all tests will be run, the report contain
code coverage of the whole project.

Example:
<project name="Sample usage of deploy task"

default="deployAndTestAndReport" basedir=".">
<target name="deployAndTestAndReport">

<taskdef name="sfdeploy"classname=
"com.claimvantage.force.ant.DeployWithXmlReportTask"/>

<delete dir="test-report-xml" quiet="true"/>
<sfdeploy

username="<username to force.com environment>"
password="<password to force.com environment>"
serverurl="<force.com server URL>"
deployRoot="<path to source directory>"
runalltests="true"
reportDir="test-report-xml" />

</target>
</project>

Example of running tests that match filter:

The following example deploys source code to a configured Force.com
environment and runs only tests that match the given pattern. In this case, ALM will
not be provided full code coverage.

Example:
<project name="Sample usage of deploy task"

default=" deployAndTestAndReport " basedir=".">
<target name="deployAndTestAndReport">

<taskdef name="sfdeploy" classname=

"com.claimvantage.force.ant.DeployWithXmlReportTask"/>
<delete dir="test-report-xml" quiet="true"/>
<sfdeploy

username="<username to force.com environment>"

Application Lifecycle Intelligence
Setting up Force.com integration

Application Lifecycle Intelligence (17.0) Page 50 of 68

password="<password to force.com environment>"
serverurl="<force.com server URL>"
deployRoot="<path to source directory>"
runalltests="false"
reportDir="test-report-xml">

<!-- Run only tests with file names that
match this pattern. Applies only if
runalltests is false.-->

<batchtest>
<fileset dir="src/classes">

<include name="*Test.cls"/>
</fileset>

</batchtest>
</target>

</project>

Element Attribute Description

sfdeploy The deploy definition

sfdeploy username Log-on name to Force.com environment

sfdeploy password Password to Force.com environment

sfdeploy serverurl URL of login page to force.com environment

sfdeploy deployRoot Path to source code directory that contains
folders, classes, triggers and so on.

sfdeploy runalltests If true, all tests are started and code
coverage of project is reported.
If false, only tests specified by batchtest
element are started. Code coverage is not
reported.

sfdeploy reportDir Directory for reports

batchtest Tests to be started if runalltests="false".

batchtest/fileset dir Location of batchtest test files

batchtest/include name Class name pattern of batchtest tests

Attributes of deploy task (sfdeploy in the examples above)

Application Lifecycle Intelligence
Setting up Force.com integration

Application Lifecycle Intelligence (17.0) Page 51 of 68

Configure Hudson/Jenkins - Force.com
1. Create a Free style job and configure the SCM and Build Triggers as needed.

2. Add the build step Invoke Ant and specify the deploy targets. See the example
target name="deployAndTestAndReport" in topic "Set up project deployment,
testing, and report generation" on page 49

3. In the Post-build Actions section, configure like this:

4. In the test report XMLs, replace the test-report-xml string with your actual
report directory. This is the same as the value of the reportDir attribute in the
Ant deploy task.

5. In the test sources mapping pattern, replace srcwith your actual path to the
source directory.

The above configuration is sufficient for most of cases, but in case that:

l The force-deploy-task is defined in the distributed Ant script which is called
from the main Ant script, configure the Report directory (value of attribute
reportDir in Ant script) in Ali Integration/Advanced.

l The source code directory (which contains folders classes, triggers etc.) is not in
the src directory which is located directly in the workspace root, configure the
Project root.

Configuration example:

Application Lifecycle Intelligence
Setting up Force.com integration

Application Lifecycle Intelligence (17.0) Page 52 of 68

Managing SCM changes and
traceability
After the repositories and branches are set up, ALI aggregates the data and
presents them in the Code Changes module of ALM. This module provides
information about what is happening to the source code in a project and maintains
traceability between the source code, requirements/defects, and releases.

This chapter includes:

• SCM changes and traceability workflow 54
• View code changes 54
• View the impact of code changes 55
• Generate project reports 56
• Generate graphs 56

Application Lifecycle Intelligence
Managing SCM changes and traceability

Application Lifecycle Intelligence (17.0) Page 53 of 68

SCM changes and traceability workflow
To manage and monitor SCM changes:

1. Require a particular format for the check-in message. See "Set commit
patterns" on page 39.

2. Control commits at the level of an SCM branch by setting check-in policies and
locking for a branch. See "Set branch check-in policies" on page 44.

3. View code changes. See "View code changes" below.

4. View the impact of code changes on defects and requirements. See "View the
impact of code changes" on the next page.

5. Review and compare the development activity of your teams and developers.

See:
l "Generate project reports" on page 56.
l "Generate graphs" on page 56.

View code changes
To access the Code Changesmodule select Development on the ALM sidebar and
click Code Changes.

Each record in the Code Changes grid presents data on one commit action,
whether a single file or multiple files were committed to the SCM.

The color of the record indicates the type of work item that the code change is
linked to.

Color Description

Blue linked to a requirement

Green linked to a defect

Red unassigned (not linked to any work item)

Application Lifecycle Intelligence
Managing SCM changes and traceability

Application Lifecycle Intelligence (17.0) Page 54 of 68

The Message column contains the commit message entered by the developer. The
Status Message displays an error or warning when the commit message does not
correspond to a predefined pattern.

Enabling the Information Panel under the Viewmenu opens the panel under the
table with tabs for viewing associated files and work items. An asterisk (*) on one
of these tabs indicates that there is data in that view pane. The tabs for view panes
that display simple text are not marked with an asterisk if there is text.

Code change details

The Code Changes details view presents additional details.

To view Code Change Details:

To open the Code Change Details window, click on the Revision field of a Code

Change or click the Code Change Details button .

Clicking View Changes in the Diff to Previous column displays the differences
from the previous version of the file.

View the impact of code changes
The Change Impact Report aggregates code change data by requirement and
defect. The report shows the size of the related changes and the developers who
checked in the code. A graph at the top right of the report shows the distribution of
effort by requirements, defects, and unassigned code changes. The effort is
expressed in KLOC (Kilo lines of code).

To view the Change Impact Report:

In the Code Changes module, select a time period and a release from the toolbar or
grid, and click View Report. All other filter values are ignored.

At the bottom of the Change Impact Report, the following options are available:

l Show Unassigned Changes. Displays changes that are not associated with a
defect or requirement.

l Print This Report.

Application Lifecycle Intelligence
Managing SCM changes and traceability

Application Lifecycle Intelligence (17.0) Page 55 of 68

l Email This Report. Creates an email in your email client that contains the URL of
the report.

Generate project reports
The ALI extension provides a set of predefined report templates that are added to
the standard ALM report selection.

Predefined templates are:

l ALI – Code Changes Template
l ALI – Defect Overview Template
l ALI – Requirement Overview Template
l ALI – Build Template

These templates enable you to create project reports related to code changes and
builds.

For more information about the generation of project reports see theMicro Focus
Application Lifecycle Management User Guide.

Generate graphs
You can generate the following graphs:

Graph Description

Code changes
Progress Graph

Shows how many code changes accumulated in an ALM
project at specific points during a period of time.

Code changes
Summary Graph

Shows how many code changes are currently in an ALM
project.

Code changes
Trend Graph

Shows the history of changes to specific code changes fields
in an ALM project, for each time interval displayed.

To generate a graph, do one of the following:

Application Lifecycle Intelligence
Managing SCM changes and traceability

Application Lifecycle Intelligence (17.0) Page 56 of 68

l Launch the Graph Wizard.

In the Code Changes module, select Analysis > Graphs > Graph Wizard.

In the Graph Wizard window, select the appropriate graph and follow the wizard
instructions.

l Create a predefined graph in the Code Changes module.

Select Analysis > Graphs and select one of the predefined graphs.
l Create a graph in Analysis View.

On the ALM sidebar, under Dashboard, select Analysis View. Right-click a folder
and select New Graph.

For more information about the generation of graphs, refer to theMicro Focus
Application Lifecycle Management User Guide.

Application Lifecycle Intelligence
Managing SCM changes and traceability

Application Lifecycle Intelligence (17.0) Page 57 of 68

Monitoring build activity
After you set up the build systems integration, ALI monitors build results together
with related code and implemented working items.

In the Builds module, you can see the status and results of your Fast, Nightly or
Integration builds and take action on reported errors. Depending on the build
system configuration, you can monitor the results of unit tests, the number of
successful or failed tests, code coverage, source code and defect statistics.

Project reports and graphs for Builds are available. For details, see "View build
reports" on the next page and "Generate build graphs" on page 60

This chapter includes:

• View builds 59
• View build reports 59
• Generate build graphs 60
• View build-test traceability 61

Application Lifecycle Intelligence
Monitoring build activity

Application Lifecycle Intelligence (17.0) Page 58 of 68

View builds
To access the Code Buildsmodule select Development on the ALM sidebar and
click Builds.

The Build Status field displays each status according to the following colors:

Color Description

Green Successful build

Yellow Warning. Indicates a problem with the build

Red Build failed

To view details of a build, click on a build number, or select a build and click the

Build Details button .

View build reports
Build Summary Report

The Build Summary Report provides an overview of builds from a given time
period and build category. The graph combines information from SCM activity and
open defects from the selected release.

To view the Build Summary Report:

Click the View Report button to generate the summary report.

Specific Build Report

The Specific Build Report displays the requirements, tests, delivered defects, new
defects, and closed defects associated with the build.

To view a Specific Build Report:

1. Click on the link for that build in the summary report, or open the build detail
page and click the View Report button.

Application Lifecycle Intelligence
Monitoring build activity

Application Lifecycle Intelligence (17.0) Page 59 of 68

2. Click Show Unassigned Changes to display code changes in the build that are
not associated with a requirement or defect.

Build Change Report

The Build Change Report provides an overview of requirements affected by the
build and defects that have been altered, closed or created by the build.

To view a Build Change Report:

1. Select a build and click Build Details.

2. On the Build Details page, click View Report to generate the change report.

Generate build graphs
You can generate the following types of graphs:

Graph Description

Builds Summary
Graph

Shows the number of builds in each of the categories you
specify as the X-axis.

Builds Trend
Graph

Shows the history of builds by fields you specify, for each
time interval displayed.

To generate a graph, do one of the following:

l Use the Graph Wizard.

To launch the wizard either:
l On the ALM sidebar, under Dashboard, select Analysis View, right-click a
folder, and select Graph Wizard. In the Graph Wizard window change the
entity name to Builds.

Or:
l In the Builds module, select Analysis > Graphs > Graph Wizard.

l Generate a predefined graph.

Select Analysis > Graphs in the Builds module and select one of the predefined
graphs.

Application Lifecycle Intelligence
Monitoring build activity

Application Lifecycle Intelligence (17.0) Page 60 of 68

l Generate a graph in Analysis View.

On the ALM sidebar, under Dashboard, select Analysis View. Right-click a folder
and select New Graph.

For more information about generating graphs, refer to theMicro Focus Application
Lifecycle Management User Guide.

Additionally, a specific project report for Builds is available. For details, see
"Generate project reports" on page 56.

View build-test traceability
Build-test traceability enables you to create and track the associations between
specific builds, and specific test sets and runs.

Before you run tests, you define a test set. You can then define the build you want
to use for the test set. This means that all the tests are going to be run on the
selected build. On the basis of this association, you can review results of test sets
and test runs for particular builds.

You can set and view associations between builds and tests in the following
locations:

Location Build-test traceability

Builds module >
Build Report

In the Build Details dialog box, click View Report to view
the Build Change Report.

Builds module >
Tests tab

In the Builds module window, or in the Build Details dialog
box, click the Tests tab.

Test Lab module >
Test Set Details
dialog box

The Test Build field displays the build number associated
with the selected test set. Select a build to associated
with the test set.

Test Lab module >
Manual Runner
dialog box

The Test Build field displays the build number associated
with the selected run.

Test Lab module >
Run Details dialog
box

The Test Build field displays the build number associated
with the selected run.

Application Lifecycle Intelligence
Monitoring build activity

Application Lifecycle Intelligence (17.0) Page 61 of 68

For more details on the Test Lab module, refer to theMicro Focus Application
Lifecycle Management User Guide.

Application Lifecycle Intelligence
Monitoring build activity

Application Lifecycle Intelligence (17.0) Page 62 of 68

Monitoring development activity
After build servers and configurations are set up, ALI displays the Development
Activity tab in the Releases, Defects, and Requirements modules of ALM. This view
pane displays detailed information and statistics for the selected ALM entity.

If there is development activity associated with a release, defect, or requirement, a
green star icon is visible on the Development Activity tab.

Monitor Development Activity in the
Releases module
In the Development Activity tab:

l Click Change to see the activity of other builds, if there is more than one related
build.

l Click Coverage to see the Coverage Report.
l Click Unit Tests to see the Unit Tests Report.

The success rate in the Build Status area is the percentage of builds that
completed with status Success or Warning. Click Configure Builds to change the
configuration. For details, see "Add build configurations" on page 21.

Monitor Development Activity in the
Requirements module
In the Development Activity tab:

l Click Change to see the activity of other builds, if there is more than one related
build.

l Click Coverage to see the Coverage Report.
l Click Unit Tests to see the Unit Tests Report.
l Click the message link in the code change to view the Code Change details
page.

Application Lifecycle Intelligence
Monitoring development activity

Application Lifecycle Intelligence (17.0) Page 63 of 68

Monitor Development Activity in the Defects
module
To view Code Changes and Active Developers associated with a defect, do one of
the following:

l Click the Development Activity tab in the table below the grid.
l Select Development Activity in a Defect Detailswindow.

To view details of a code change, click the Message link in Code Changes .

ALI adds three values to the Defect Details page:

l Detected in Build – the build the defect was detected on.
l Closed in Build - the build the defect was closed on.
l Caused by Code change – the code change that caused this defect.

If a static code analysis tool supporting integration with has been configured,
these values are automatically set. If not, they can be set using the drop down list.

Data from these fields can be viewed in the Defects section on the Build Details
page. The data is also included in the Build Summary Report. For details, see "View
build reports" on page 59.

Application Lifecycle Intelligence
Monitoring development activity

Application Lifecycle Intelligence (17.0) Page 64 of 68

Appendix 1: Supported systems
This appendix details the systems supported by ALI.

This appendix includes:

• Supported SCM systems 66
• Supported build systems 67
• Supported Force.com versions 68

Application Lifecycle Intelligence
Appendix 1: Supported systems

Application Lifecycle Intelligence (17.0) Page 65 of 68

Supported SCM systems
ALI supports the following SCM systems:

System Versions

Subversion 1.7.x, 1.8.x (Tested on 1.7.1, 1.7.3, 1.8.3)

Concurrent Versions
System (CVS)

1.11.x, 1.12.x (Tested on 1.11.23, 1.12.13)

Microsoft Team
Foundation Server (TFS)

2012, 2013, 2015 Update 3, 2017 (Tested on TFS
2012, 2013, 2015 Update 3, 2017), 2018

Perforce 2013.1, 2014.2 (Tested on 2013.1, 2014.2)

Git 1.8.x, 2.1.x (Tested on 1.8.5, 2.1.2, Linux only)

The SCM agents support deployment to the following operating systems:

Red Hat Enterprise Linux 6.x (32bit, 64bit)

SuSE Linux Enterprise 11.x (32bit, 64bit)

Windows 2008 R2 Server (64bit)

Windows 2012 Server (64bit)

Windows 2012 R2 Server (64bit)

Windows 2016 Server (64bit)

Prerequisites:

MS PowerShell 2.0 or later must be installed on Windows and enabled to run
scripts. Linux/Unix agent scripts use BASH. The BASH version must be 4.0 or later
to support pushing into multiple repositories.

Limitations:

l CVS: The CVS ALI agent doesn't work correctly on the CVS version 1.12 which
was upgraded from the version 1.11. Information about a change set is not sent
to the ALM server in this case.

Application Lifecycle Intelligence
Appendix 1: Supported systems

Application Lifecycle Intelligence (17.0) Page 66 of 68

Workaround: edit CVSROOT/config configuration file by adding the following
string: UseNewInfoFmtStrings=yes.

c:\Users\%USER%\AppData\Local\Micro Focus\ALM-Client\

c:\Users\%USER%\AppData\Local\Temp\TD_80\

c:\Users\%USER%\AppData\Local\Temp\Temporary Internet Files\

c:\Users\%USER%\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\

l Git: ALI does not support the Git functionality of changing the history of commits.
If commit history is changed in a Git repository, you must reload the entire
commit history tracked by ALI for all affected branches. To reload the commit
history, remove these branches and add them again.

Supported build systems
ALI supports these build systems:

System Versions

Jenkins - Long-Term
Support releases

1.532.1, 1.565.3 (Tested on 1.532.1, 1.565.3)

Hudson - Production
Versions

3.1.0, 3.2.1 (Tested on 3.1.0, 3.2.1)

Microsoft Team
Foundation Server (TFS)

2012, 2013, 2015 Update 3, 2017 (Tested on TFS
2012, 2013, 2015 Update 3, 2017), 2018

ALI provides plug-ins for build servers. The plug-ins automatically extract build
information and metrics and save them to ALM.

ALI supports these development metric tools:

Application Lifecycle Intelligence
Appendix 1: Supported systems

Application Lifecycle Intelligence (17.0) Page 67 of 68

Tool Versions

Unit Testing l JUnit – Tested on versions bundled with supported build
systems.

l TestNG - Tested on Hudson 0.8, Jenkins 0.28, Jenkins 0.32
l NUnit - Tested on Hudson 0.10, Jenkins 0.14 + version of
NUnit framework 2.5.10, TFS 2012, 2013

l Visual Studio Managed Unit Testing Framework (MSTest -
part of VS 2012, 2013)

Code
Coverage
Analysis

l Cobertura - Tested on Hudson 1.1, Jenkins 1.3
l NCover - Tested on Hudson 0.3, Jenkins 0.3 + version of
NCover 3.4.18.6937 x86 (trial)

l Visual Studio 2012, 2013 Code Coverage

Supported Force.com versions
Force.com integration was tested on Force.com API version 22.0.

Application Lifecycle Intelligence
Appendix 1: Supported systems

Application Lifecycle Intelligence (17.0) Page 68 of 68

	ALI introduction
	ALI overview
	ALI workflow

	Before you begin
	Enable the ALI extension
	Migrate from previous versions
	Configure scheduled synchronization
	Configure TFS integration support

	Setting up build system integration
	Build system setup workflow
	Hudson/Jenkins integration
	ALI Hudson/Jenkins plugin deployment
	ALI Hudson/Jenkins plugin configuration

	TFS build server integration
	Add a build server
	Add build configurations
	Reuse SCM configurations from build configurations
	Set build configuration defect filters
	Configure build change detection
	Customize ALI project lists
	Track code issues

	Setting up source control management system integration
	SCM setup workflow
	SCM integration prerequisites and limitations
	SCM agents

	Add SCM repositories
	Add a Subversion repository
	Add a CVS repository
	Add a Perforce repository
	Add a TFS repository
	Add a Git repository

	Set an external repository viewer
	Set commit patterns
	Associate code changes with alternative identifiers

	Add branches and associate with release
	Set branch check-in policies
	Configure code change detection

	Setting up Force.com integration
	Prerequisites
	Set up project deployment, testing, and report generation
	Configure Hudson/Jenkins - Force.com

	Managing SCM changes and traceability
	SCM changes and traceability workflow
	View code changes
	View the impact of code changes
	Generate project reports
	Generate graphs

	Monitoring build activity
	View builds
	View build reports
	Generate build graphs
	View build-test traceability

	Monitoring development activity
	Monitor Development Activity in the Releases module
	Monitor Development Activity in the Requirements module
	Monitor Development Activity in the Defects module

	Appendix 1: Supported systems
	Supported SCM systems
	Supported build systems
	Supported Force.com versions

