
Software version: 14.7

Dimensions CM

Dimensions for z/OS Guide

Copyright © 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors
(“Open Text”) are as may be set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Product version: 14.7

Last updated: December 8, 2023

Dimensions for z/OS Guide 3

Table of Contents

Chapter 1 Introduction . 11
Getting Started. 12
Overview of Dimensions for z/OS 12
Item Libraries. 13
User Files on z/OS Mainframes . 13
UNIX Systems Services . 14
Moving Files Between Platforms . 15
Codepage Conversion . 16
Upload Rules for z/OS Files . 17
Using z/OS Mainframe Node Names 17
Browsing MVS Deployment Areas in Dimensions Clients . . . 18
Streams on the Mainframe. 18

Chapter 2 Installing Dimensions for z/OS 19
Installation Prerequisites . 20

Resource Requirements . 20
Software Prerequisites . 20
System Prerequisites . 21

Licensing Dimensions for z/OS . 23
Preserving Existing Installations . 23
Installation Roadmap . 25
Step A Preparing the Installation 26

Step A-1 Unpacking and Moving the Distribution 26
Step A-2 Expanding to Intermediate Format 29
Step A-3 Constructing System Libraries 30

Step B Setting Up Security for a Dimensions for z/OS Listener 32
Overview of Security . 32
Step B-1 Setting Up RACF/USS Security 38

Step C Setting Up an Instance of Dimensions for z/OS 41
Overview of Setup . 41
Step C-1 Customizing Variables in the
Installation Template Job . 43

4 Dimensions® CM

Table of Contents

Step C-2 Running the Templated Installation Process . . 53
Step C-3 Setting Up Instance Security 53
Step C-4 Starting the Local Metadata Server 54
Step C-5 Starting the z/OS Instance 54
Step C-6 Setting Up Mainframe Network Nodes 55
Step C-7 Verifying the Installation of the Instance 59

Step D Installing the ISPF Client for an Instance 61
Step D-1 Setting Up the ISPF Client for an Instance . . . 61
Step D-2 Verifying the ISPF Installation 64

Optional Installation Steps . 65
Installing the Watcher SVC Exit. 65
Customizing Variables in the Dimensions
Configuration File . 67
Setting Up the Scripting Interface 75

MVS Listener Memory Check . 76

Chapter 3 ISPF Client Quick Start Tutorial. 79
Introduction . 79
Prerequisites . 79
Exercise 1 Log In to Dimensions . 80
Exercise 2 Take a Quick Tour of the Menus 84
Exercise 3 Create a New Project and Directory 86
Exercise 4 Set the Project and Project Root. 87
Exercise 5 Change Directories . 89
Exercise 6 Create a New Item . 89
Exercise 7 Browse the Item. 91
Exercise 8 Check Out the Item . 92
Exercise 9 Undo the Check Out . 94
Exercise 10 Action the Item . 94
Exercise 11 Display Help Panels. 95
Exercise 12 Log Off from Dimensions 96
Summary . 96

Chapter 4 Operating a Dimensions Instance 97
Starting a Dimensions Instance . 98
Stopping a Dimensions Instance . 98
Viewing OMVS Processes from SDSF 98
Altering Message Handling in your Dimensions Listener 98

Table of Contents

Dimensions for z/OS Guide 5

Started Tasks . 99

Chapter 5 Using the ISPF Client 101
Logging In to the ISPF Client . 102

Profiles . 102
Password Retention . 102

About the ISPF Client Main Panel 103
About the Main Panel Display. 103
Configuring the Main Panel Display. 104
Expanding Directories . 105
Displaying all Item Revisions 106
Viewing Item History . 106
Setting Preferences . 106
Displaying the ISPF Client Version Number 107

Invoking Help. 107
Keyboard Shortcuts in Help Topics 108

Setting the Project Root and the Current Project 108
Performing Actions on Items . 108

Checking Out Items . 110
Checking In Items . 111
Undoing a Check Out . 111
Browsing Items . 111
Getting (Fetching) Items . 111
Comparing Items . 112
Editing Items . 112
Updating Items . 113
Actioning Items . 113
Deleting an Item . 113
Deploying an Item . 113

Performing Actions on Groups of Items 114
Creating Items . 115
Browsing and Printing Requests . 115
Building . 115

Building Items . 117
Building Projects . 117
Building Requests. 117
Building Baselines . 118
Impacted Targets . 120

6 Dimensions® CM

Table of Contents

Entering Dimensions Commands . 120
Repeating Recently Used Commands 121
Using the History List. 121

Processing Commands in Batch Mode. 122
Logging In to a Remote Node . 123
Changing Passwords . 124
Browsing the Command Log File . 124
Entering TSO Commands . 124
Logging Off from the ISPF Client . 124

Chapter 6 Using the Batch Interface 125
Overview . 126
DD Names . 127

LOGIN . 127
COMMAND and SYSIN . 127
SYSPRINT. 128
SYSOUT . 128

Return Codes . 129
Securing Passwords . 129
Example JCL Jobstream . 129
Using the Batch Interface Interactively. 132

Chapter 7 Using the Command-Line Client on USS 133
Using the Command-Line Client. 134
Invoking Help . 135

Chapter 8 Customizing and Extending the ISPF Client 137
Introduction . 138
ISPF Client Extensions . 138

MDFRLOG. 138
MDFRCMPR. 140
MDFRTMP. 141
MDFRSFF . 142
MDFRVIEW . 144
Client Executable Components 144

API Interface. 149
Main Header File . 149
ISPF Variables. 149

Table of Contents

Dimensions for z/OS Guide 7

API Common Structures . 152
General Functions . 155
Log File Functions. 158

Source Code Library . 162
MDTCNAV . 164
MDTCNEW. 165
MDFCCMPR . 174
MDTJCOMP . 183
MDTJLINK . 183
MDFRCMPR . 184
MDFRLOG . 184
MDFRTMP . 184
MDFRSFF. 184
MDFDUSR . 185
MDTHDIM . 185
MDTMUSR . 191
MDTPUSR . 191
MDFDUSR . 193

Chapter 9 Tips, Troubleshooting, and Restrictions 195
Tips. 196

Mapping Project Directories to Partitioned Data Sets . . 196
About the /tmp Directory . 196
About the Local Metadata VSAM Data Set 197

ISPF Client Troubleshooting . 197
Problems Displaying Panels when Starting
the ISPF Client. 197

Dimensions Listener Troubleshooting 198
MVS Listener Start Up Diagnostics 198
Problems with UNIX Access . 200
Problems Switching User IDs 200
Configuring z/OS Mainframe Network Nodes Correctly . 201
Problems with Codepages . 201
Problems with Server Codepages 201
Interpreting ISPF Statistics . 202
Configuring Auto-Allocation . 202
Setting up Tracing . 203
Problems with Licensing . 203

8 Dimensions® CM

Table of Contents

Started Tasks . 204
SVC Exit. 205
Memory Usage . 205

Restrictions . 206
Unsupported Dimensions Commands 206

Appendix A Temporary Data Sets 207

Appendix B Supplementary Resources 209
Advent . 210
Disassembler. 210
Examples . 211

Appendix C Solving Codepage Translation Errors 213
Introduction . 214
Problem Definition . 214

Special Characters. 215
Diagnosing the Problem . 216
Customizing Codepage Translation. 217

Overriding Individual Character Translations. 217
Changing Locale . 218

Appendix D Setting Up Dimensions Metadata 219
Introduction . 220
Hierarchical Systems . 220
MVS Systems . 221

Appendix E The Local Metadata Server 223
Introduction . 224

Improvements to LMDS . 224
Installation . 225
Operation . 226
MDHLMDRV Syntax . 227

Appendix F Viewing USS SYSLOG Messages. 231

Appendix G MVS DDNAME Caching 233
Overview . 234

Table of Contents

Dimensions for z/OS Guide 9

Dimensions Configuration Symbols 234
DM_MVS_DDC_DISABLE . 234
DM_MVS_DDC_TRACE . 234
DM_MVS_DDC_VOLUME_FILTER 235
DM_MVS_DDC_LOGIC . 235
DM_MVS_DDC_BPXWDYN . 237

Wildcard Patterns . 237
Data Set Selection Expression . 238

Strings . 239
Numbers . 239
Operators . 240
Variables. 241
Example Logic File . 243

Appendix H Enabling SSL Support on the z/OS Listener 245
Introduction . 246
Enabling SSL Support . 246

10 Dimensions® CM

Table of Contents

Dimensions for z/OS Guide 11

Chapter 1
Introduction

Getting Started 12
Overview of Dimensions for z/OS 12
Item Libraries 13
User Files on z/OS Mainframes 13
UNIX Systems Services 14
Moving Files Between Platforms 15
Codepage Conversion 16
Upload Rules for z/OS Files 17
Using z/OS Mainframe Node Names 17
Browsing MVS Deployment Areas in Dimensions Clients 18
Streams on the Mainframe 18

NOTE The term z/OS used in this document refers to the
z/OS V1R5 or later operating system.

12 Dimensions® CM

Getting Started
If you are new to OpenText™ Dimensions for z/OS, the "ISPF Client Quick
Start Tutorial" on page 79 explains how to get started with the ISPF
client.

Overview of Dimensions for z/OS
Dimensions for z/OS enables mainframe hardware to participate in a
Dimensions network in the following ways:

 Dimensions for z/OS as a Dimensions remote node

Any Dimensions client requesting an action on a user file, either as a
source or destination, can refer to a file on a z/OS host using the
Dimensions remote node syntax.

You can also run batch jobs on a node, after applying symbols to
templates or USS scripts. Can also submit builds on both MVS and
USS, and collect outputs.

 Dimensions for z/OS as a Dimensions item library server

An item store, managed by a Dimensions CM server, can be
physically held on a z/OS host machine. Item libraries are stored on
HFS, which is a feature of UNIX Systems Services (USS). HFS
provides a robust storage mechanism and is consistent with other
Dimensions platforms. For more details about USS see page 14.

 Dimensions for z/OS clients

The following clients are available for Dimensions for z/OS:

• ISPF client: an interactive client running in the TSO/ISPF
environment that supports most Dimensions functions. For details
see page 101.

• A batch interface for processing Dimensions commands. For
details see page 125.

• dmcli: the UNIX command-line client, available on USS, that is
equivalent in functionally to the command-line client on other
platforms. The USS command prompt is also referred to as the
'OMVS shell'. For details, see page 133.

Dimensions for z/OS Guide 13

Item Libraries
Dimensions stores the physical items that belong to your projects in item
libraries on a z/OS mainframe or any other platform supported by
Dimensions. For details about defining item libraries, see the Dimensions
CM online help.

User Files on z/OS Mainframes
When you get or check out an item from an item library, Dimensions for
z/OS copies the item to a user file in a location that you specify.
Dimensions for z/OS supports the following file types for user files on
z/OS mainframes:

 Members of partitioned data sets (PDS), with limitations.

 Members of extended partitioned data sets (PDSE).

 Individual Queued Sequential Access Method (QSAM) data sets (also
known as sequential files or flat files).

 Files stored in the UNIX System Services Hierarchical File System.

The following z/OS record formats are supported:

 Fixed

 Variable and undefined lengths

 Blocked and unblocked records

When you are working in a group environment that is sharing data sets,
we recommend that all PDS type data sets be allocated as PDSEs.

There are a number of problems with PDSs, including:

 Multiple user write access.

 Locking issues in the same system and across systems.

 Handling when the PDS cannot accommodate more data and needs
compressing.

14 Dimensions® CM

Dimensions uses the standard IBM ISPF ENQs to serialize access to
members for reading and writing, however no attempt is made to use
RESERVE to lock the whole data set on write operations. Heavy
simultaneous use of a single PDS for write may therefore fail.

UNIX Systems Services
IBM mainframes running z/OS provide a POSIX-compliant UNIX
environment, usually called UNIX Systems Services (USS). Applications
running under z/OS using USS have full UNIX functionality but can also
access all traditional MVS-style resources such as libraries and the Job
Execution System (JES).

UNIX System Services uses the following file systems:

 Hierarchical File System (HFS): this is the original file system from
IBM.

 zFS file system: an alternative file system from IBM supplied in later
versions of the operating system. You can use zFS interchangeably
with HFS.

Dimensions for z/OS utilizes USS to enable you to use standard format
UNIX item libraries stored with directories in a mainframe's UNIX file
systems.

The Dimensions listener running under USS has the following main
advantages:

 The Dimensions DTK functions are available for user-defined
extensions on z/OS. For more details, see page 137.

 MVS data sets can be created dynamically, including PDS and PDSEs,
to contain fetched items.

 Security is improved, with the server process switching to the target
user's identity for operations, allowing full participation in a RACF
security environment.

Dimensions for z/OS Guide 15

 You can use both the HFS file system and MVS data sets. You can
maintain deployment areas on z/OS in the UNIX and MVS file
systems, in synch with items in the Dimensions repository, and
migrate items between stages automatically as the status of items is
changed in Dimensions.

 Secure mechanisms for initiating controlled builds are available which
allow different security from that of the user originating the build.

Moving Files Between Platforms
When you create a new item you must correctly assign its type. If you
assign the type TEXT, Dimensions uses code-pages to convert the data as
you move it between platforms. If you assign any type that implies that
the data is binary, such as an executable file, Dimensions does not
attempt to code-page convert the data.

When you move items between platforms you need to ensure that the
files do not lose their integrity and that the original and target locations
have consistent codepages. For example, if you move an item from a z/
OS mainframe to Windows and then back to the mainframe, the
codepage for the mainframe connection has to be similar for both
actions.

You can move all file types to z/OS user areas even if there are no
compatible applications on z/OS that can edit them. For example, you
might move a file if you were using z/OS as an intermediate storage
location for a finished item, such as a JPEG image that forms part of a
web-based application that will be rendered in a browser.

Items created on Windows or UNIX contain variable-length records, each
delimited by carriage-return and line-feed (CRLF) characters (on
Windows), or a line-feed (LF) character (on UNIX). When you store these
items in Dimensions, the Dimensions repository stores them with the
maximum record length as 'unset'. The repository also saves other
attributes that are needed when the item is stored on z/OS. Actual values
are set to defaults when the file is written, although you must ensure
that records are not truncated. You can extract the item to a user file on
z/OS with a fixed or variable record format, provided that none of the
records are longer than the maximum record length set for the user file.

16 Dimensions® CM

Codepage Conversion
A codepage defines the method of encoding characters. The page
encompasses the ways characters are encoded on different platforms
(EBCDIC on z/OS, and various flavors of ASCII on Windows and UNIX)
and the differences between human languages. Every item in Dimensions
has a codepage associated with it, defined for the connection between
the database server and the logical node from which the user file was last
checked in or created. You can define connections in the Network
Administration area of the Administration Console, or use the Network
Administration command-line interface. For details, see the
Administration Guide. You can override the default codepage for a
connection when you check in an item, update an item, or get or check
out an item.

A single Dimensions listener can handle several different connections
with different EBCDIC code pages using the logical node naming. This is
useful in large environments servicing several different language
communities with different character set requirements. Care needs to be
taken to ensure that compatible subsets of the character sets are used in
this sort of environment.

When Dimensions moves text files between platforms, it performs any
necessary codepage conversion between EBCDIC and ASCII, but does
not convert between different ASCII codepages. When Dimensions
moves binary files between platforms, no conversion is performed.

When you create an item, Dimensions stores it in the item library using
the codepage associated with the connection between the item's location
and the Dimensions server. Dimensions then performs codepage
conversion only when items are checked out or fetched, not when they
are checked in or updated. Different revisions of an item can be stored
using different codepages. For example, if you create an item from a user
file on z/OS, it is stored in EBCDIC, as long as you do not override the
codepage for the logical node. If you then check out the item to a PC, it is
converted to ASCII during the move. If you subsequently check in the
item, Dimensions stores the new revision in ASCII.

For details about codepages and translation, see the file codepage.txt
on the Dimensions servers:

 Windows: %DM_ROOT%codepage

 UNIX: $DM_ROOT%codepage

Dimensions for z/OS Guide 17

For details about using variables to control how codepages are converted,
see page 213.

Upload Rules for z/OS Files
Upload rules map file name patterns to Dimensions file formats and item
types. These rules determine whether files that match a certain file name
pattern can be added to the database using a Dimensions client or an
IDE. Upload rules must exist in the base database before you can start
adding files.

You can use the Upload Rules section in the Administration Console to
specify rules that determine which z/OS files can be added to the
Dimensions database and which files should be excluded, for example:

%.CBL

The behavior of upload rules varies depending on the server platform
type. If your server is UNIX you need to specify case-sensitive upload
rules. For details about using upload rules, see the Dimensions CM online
help.

Using z/OS Mainframe Node Names
When using a z/OS listener, you must specify a logical node with related
connection details that define protocols, codepages, and the target file
system type. In the examples below, <USS logical node name> is a
logical node defined for a physical z/OS listener with a UNIX style file
system. <MVS node name> refers to a logical node defined for a physical
z/OS listener with an MVS file system.

In a Dimensions client, use the following syntax when writing to z/OS
mainframe nodes:

 USS node: <USS logical node name>::/<path and filename>
For example: DEV-USS::/tmp/prog.c

 MVS node: <MVS node name>::<member name>
For example: DEV-MVS::USER.SOURCE.COBOL(PROG)

18 Dimensions® CM

Browsing MVS Deployment Areas in
Dimensions Clients

You can browse MVS deployment areas in the Dimensions CM web and
desktop clients. For details, see the Dimensions CM online help.

Streams on the Mainframe
Dimensions streams are not supported on the mainframe.

Dimensions for z/OS Guide 19

Chapter 2
Installing Dimensions for z/OS

Installation Prerequisites 20
Licensing Dimensions for z/OS 23
Preserving Existing Installations 23
Installation Roadmap 25
Step A Preparing the Installation 26
Step B Setting Up Security for a Dimensions for z/OS Listener 32
Step C Setting Up an Instance of Dimensions for z/OS 41
Step D Installing the ISPF Client for an Instance 61
Optional Installation Steps 65
MVS Listener Memory Check 76

NOTE This document and all the supplied examples assume that you
are installing the code for Dimensions for z/OS to MDH.V1453.* and
that you are installing an instance to MDH.<instance>.*. If you install
to different names, you must adjust these values.

20 Dimensions® CM

Installation Prerequisites
This section describes the prerequisites for installing Dimensions for
z/OS in your mainframe environment.

Resource Requirements
Before installing Dimensions for z/OS check the following z/OS resource
requirements:

 7000 tracks of 3390 DASD on the MVS file system for the code
install.

 5 MB of disk for each Dimensions instance although exact
requirements can vary based on configuration options.

 10 MB of USS space for the USS file structures (not including space
required for item libraries).

 Up to 25,000 tracks might be needed during the retrieval and
unpacking of the distribution.

Software Prerequisites
Before installing Dimensions for z/OS check the following software
requirements:

 A Dimensions CM server has been installed and is running. For details
see the installation guides for Windows or UNIX. Dimensions for z/OS
is not currently a server platform.

 License Manager has been installed, is running and is connected to
the Dimensions CM server.

 You have a valid Dimensions for z/OS license. For details about
licenses, see the Dimensions CM online help. For details about
licensing Dimensions for z/OS, see page 23.

 You have a supported z/OS operating system installed on your
machine.

Language Environment is required at the corresponding level for
each base operating system.

Dimensions for z/OS Guide 21

 The z/OS USS environment is configured and is usable. A file system
suitable for creating instance files is available and mounted.

System Prerequisites
Before installing Dimensions for z/OS check the following system
requirements:

 TCP/IP is configured and running on the z/OS platform. DNS look up
should also be available. Use the TSO PING command to ping the
following:

• The Dimensions server, by name or TCP/IP address, from the
z/OS TSO/ISPF command line.

• The z/OS node from a Dimensions server shell.

 If you have a fire wall, check that there are open ports for the
Dimensions instances.

 You can communicate with a local metadata server.

 You have defined an HLQ called DMSYS, or equivalent, as a valid
HLQ, preferably a user ID or RACF group. Associated master catalog
aliases and RACF profiles have been established so that data sets can
be created under this profile. This profile holds the initial unpacked
distribution. You may need to establish SMS definitions for this HLQ.

You have defined the HLQ MDH, or equivalent, and created suitable
aliases. This HLQ is used for the base code installation. The data sets
should be protected by a RACF profile that typically has Universal
Access Authority (UACC) READ access, but may be more restricted
depending on your specific requirements.

NOTE It is now possible to install to an HLQ that consists of multiple
qualifiers, for example, PRODUCT.MDH.

22 Dimensions® CM

 Either DMSYS or another user ID exists that can be used as the user
ID under which the Dimensions listener runs. The user ID should
have an UID = 0 in their OMVS segment, access to SUPERUSER, and
READ access to:

• BPX.SUPERUSER in the class FACILITY.

• The RACF resource BPX.DAEMON.

After installation is complete you should restrict access to this user
ID, although it needs to be available when creating instances.

 The user accounts for Dimensions users have UNIX System Services
(USS) access. That is, OMVS segments associated with the RACF
user IDs with valid UIDs, GIDs, and home directories. You must have
write access to the home directories. Dimensions does not explicitly
use the home directories, but they are required to complete a valid
UNIX environment.

 The standard IBM utility BPXWDYN has been installed into a library on
the link list. If BPXWDYN is not installed, download it free from the
IBM website.

 If you are loading modules into the Extended Link Pack Area (ELPA),
you may need to alter the system IPL (Initial Program Load)
parameters. Use of this option is required for production systems.

Review the definition of CSA in the system parameter file IEASYSnn.
The parameter is in the following format:

CSA=(low,high)

where high defines the maximum amount of 'above the line CSA'
(ECSA) this system can use. If you install Dimensions into LPA it
requires at least 140 MB of storage above the line (ECSA). For details
about CSA, see the z/OS VIR3.0 MVS Initialization and Tuning
Reference.

We assume that RACF is being used for security in the z/OS environment.
Dimensions for z/OS may work with alternative security managers if they
are fully compliant with IBM's SAF (Security Access Facility), and provide
equivalent functionality when managing the USS environment.

https://www.ibm.com/docs/en/zos/latest?topic=zos-unix-system-services

Dimensions for z/OS Guide 23

Licensing Dimensions for z/OS
Dimensions for z/OS uses License Manager to manage licensing. License
Manager uses a text data license file that includes the 'ZOS' designator.
'ZOS' controls how many LPARs (mainframe logical partitions) a
Dimensions listener is allowed to be started on simultaneously. You can
run as many Dimensions listeners as required on a single LPAR and only
one license is consumed.

The Dimensions listener needs a proxy server for the License Manager.
The proxy is a Dimensions server running on a distributed platform. The
default port number is 671. You must change the default port number if
your listener is running on another port.

When a mainframe listener starts it contacts a remote Dimensions
listener. The remote listener checks out a license that has the 'ZOS'
designator from License Manager.

For details about using License Manager, see the Administration Guide.

Preserving Existing Installations
Dimensions installations are performed in three phases:

1 Obtaining and unpacking the distribution.

2 Installing the code base.

3 Installing the instance.

The code base installation is different for each release of the product, and
is never altered by the installation except by patches.

The instance installation creates a listener and a local metadata server.
Instances use a specific code base, which you can alter after the instance
is installed. You can have multiple instances for a specific code base to
allow for test installations, multiple instances across a Sysplex, or for
contingency reasons.

When you install Dimensions for z/OS, it installs the code base by default
to a new set of data sets named MDH.V1453.*. This installation does not

24 Dimensions® CM

overwrite any previous installation. However, when you install an
instance, it overwrites any previous instance of the same name.

To keep your configuration for previous instance installations:

1 Rename the data sets PARM and TEMPLATE.

2 Rename the PROCLIB member(s) used to start the instance.

3 On the USS side use the mv command to rename the USS instance
directory to a saved or backup name.

4 Perform the new instance install.

5 Reconcile the variables that you customized in the old Dimensions
configuration file with the new files.

Dimensions for z/OS Guide 25

Installation Roadmap
The following table lists all of the steps in the Dimensions for z/OS
installation roadmap:

Step A Preparing the Installation
Step A-1 Unpacking and Moving the Distribution 26
Step A-2 Expanding to Intermediate Format 29
Step A-3 Constructing System Libraries 30
Step B Setting up RACF/USS Security for a Dimensions for z/OS

Listener
Overview of Security 32
Step B-1 Setting Up RACF/USS Security 38
Step C Setting up an Instance of Dimensions for z/OS
Overview of Setup 41
Step C-1 Customizing Variables in the Installation Template Job 43
Step C-2 Running the Templated Installation Process 53
Step C-3 Setting Up Instance Security 53
Step C-4 Starting the Local Metadata Server 54
Step C-5 Starting the z/OS Instance 54
Step C-6 Setting Up Mainframe Network Nodes 55
Step C-7 Verifying the Installation of the Instance 59
Step D Installing the ISPF client for an Instance
Step D-1 Setting Up the ISPF Client for an Instance 61
Step D-2 Verifying the ISPF Installation 64
Optional Installation Steps
Installing the Watcher SVC Exit 65
Customizing Variables in the Dimensions Configuration File 67
Setting Up the Scripting Interface 75

26 Dimensions® CM

Step A Preparing the Installation

Step A-1 Unpacking and Moving the
Distribution
This step describes how to obtain the Dimensions CM for z/OS
distribution, unpack it to a directory on a Windows machine, and move it
to your MVS system.

To unpack and move the distribution:

1 Obtain the Dimensions CM for z/OS distribution from the Support
website.

2 On a Windows machine, unzip the file to a suitable directory and
open the root folder that is created.

3 Double-click the installer file. The Dimensions CM for z/OS install
wizard opens.

4 (Optional) Open the readme file.

5 Accept the License Agreement.

6 To specify the folder where the distribution will be unpacked on your
machine, click Change, navigate to the folder, select it, and click OK.

7 Review the installation settings and click Install.

8 Click Finish.

9 Verify that the following files have been unpacked to your installation
directory:

• Dimensions-<MDHnnnn>-DMnnnn-GA-XPACKGE-XMIT (or
similar)

This is the distribution for Dimensions for z/OS where:

• <MDHnnnn> is the internal version number for the distribution.

NOTE The Dimensions CM for z/OS installer is separate from the
Windows and UNIX installers.

https://www.microfocus.com/support-and-services/#Dimensions CM

Dimensions for z/OS Guide 27

• DMnnnn is the external version number of the Dimensions for
z/OS release.

• Dimensions-<MDHnnnn>-DMnnnn-GA-MDHJSTRT.jcl (or
similar)

This is a piece of JCL that you can use to move the distribution to
an MVS system and expand the distribution to an intermediate
format. This JCL includes a dummy step that can retrieve the
main distribution. Edit the JCL and follow the instructions inside.

• readme_zos.html

This is the readme file for this distribution.

• sdk_ispf_client_help.zip

This is a Zip archive containing web-based help for the ISPF SDK.
Extract the contents of the archive to any directory that you
choose. After you have extracted the archive, to open the help
double click index.html at the root of the folder ISPF Client SDK
Help.

The next steps show you how to move the first two files to your MVS
system.

10 On your Windows machine use the following FTP steps to move the
JCL to your MVS system:

ftp <hostname>
<userid>
<password>
ascii
cd 'userid.MISC.JCL'
put Dimensions-<MDHnnnn>-DMnnnn-MDHJSTRT.jcl MDHJSTRT
quit

where:

28 Dimensions® CM

• <hostname> is the DNS name of your MVS system or its numeric
IP address.

• ascii specifies that the JCL will be translated from ASCII to
EBCDIC.

• cd specifies an MVS data set, typically a PDSE, where the job
stream will be placed.

11 On your Windows machine use the following FTP steps to move the
distribution to your MVS system:

ftp <hostname>
<userid>
<password>
binary
quote site blksize=3120 unit=sysda
quote site ucount=10 recfm=fb lrecl=80
quote site cy prim=250 sec=250
put Dimensions-<MDHnnnn>-DMnnnn-XPACKGE-XMIT

'<USERID>.DOWNLOAD.<MDHnnnn>.XMIT'
quit

where <hostname> is the DNS name of your MVS system or its
numeric IP address.

NOTE You can also use the following methods to move the distribution
manually to MVS:

 IND$FILE

 The first step in MDHJSTRT.jcl. This step is inoperative unless you
customize it. You need an FTP server holding your distribution for
this step to work.

Dimensions for z/OS Guide 29

Step A-2 Expanding to Intermediate Format
This step describes how to expand the distribution to intermediate
format. This step is performed by MDHJSTRT.jcl (which you transferred in
step A-1 from Windows).

To expand to intermediate format:

1 You need a user ID to hold the distribution. The default is DMSYS (the
Dimensions administration user ID). This user ID needs to be an HLQ
for the jobs to run unaltered. However, any user ID can be used,
provided it has the required authorities.

You may need to create an alias from the master catalog to a user
catalog for any HLQs you are going to use. You will require authority
to the master catalog. This activity may have to be performed by a
separate group, for example, DASD administration.

2 Tailor the job MDHJSTRT before running it. For details see the
instructions in the job.

3 Submit the job and check that all steps have executed as expected.
The job assumes standard catalogue mechanisms work.

After this process completes successfully you will have two data sets
on the MVS file system called:

<HLQ>.DOWNLOAD.A

<HLQ>.MDHnnnn.F1.SAMPLES

Only the MDHJUPNS job in the library <HLQ>.MDHnnnn.F1.SAMPLES
is required (see the next step).

NOTE Step 301 may return 8, however this is not an error.

30 Dimensions® CM

Step A-3 Constructing System Libraries
This step describes how to construct the system libraries that are
required to run Dimensions for z/OS.

To construct system libraries:

1 Edit the data set <HLQ>.MDHnnnn.F1.SAMPLES and modify the
member called MDHJUPNS. Instructions about modifying this job are
contained inside it.

2 Run the job MDHJUPNS, check the output, and correct as required.
Repeat until the installation is correct.

When you have finished there will be a set of data sets called
MDH.V1453.** (or similar) on your system (see the manifest list
below). These data sets contain everything you require to set up multiple
Dimensions instances. You will need to copy some members and modify
them but you should leave the contents of MDH.V1453.** unchanged.

Manifest Listing of Data Sets

After the job MDHJUPNS has run the following data sets will be on your
system:

Main distribution

MDH.V1453.MDHCLIB

MDH.V1453.MDHCNTL

MDH.V1453.MDHLLIB

MDH.V1453.MDHLLPA

MDH.V1453.MDHMENU

MDH.V1453.MDHPARM

MDH.V1453.MDHPENU

NOTE

 Newer releases have a different middle-level qualifier to allow you to
load different versions of Dimensions simultaneously.

 Step UPNS40x may return 8, however this is not an error.

Dimensions for z/OS Guide 31

MDH.V1453.MDHRLIB

MDH.V1453.MDHSAMP

MDH.V1453.MDHTAR

MDH.V1453.MDHTPLT

MDH.V1453.SMDHSID

Supplementary materials

MDH.V1453.SUPP.ADVENT.C

MDH.V1453.SUPP.ADVENT.CLIST

MDH.V1453.SUPP.ADVENT.CNTL

MDH.V1453.SUPP.ADVENT.CONTROL

MDH.V1453.SUPP.ADVENT.H

MDH.V1453.SUPP.ADVENT.SYSLIN

MDH.V1453.SUPP.ADVENT.TGT

MDH.V1453.SUPP.ADVENT.XML

MDH.V1453.SUPP.DISASS.ASM

MDH.V1453.SUPP.DISASS.CNTL

MDH.V1453.SUPP.DISASS.SYSLIN

MDH.V1453.SUPP.DISASS.TGT

MDH.V1453.SUPP.EXAMPLES.BAT

MDH.V1453.SUPP.EXAMPLES.CNTL

MDH.V1453.SUPP.SDK.C

MDH.V1453.SUPP.SDK.CNTL

MDH.V1453.SUPP.SDK.H

MDH.V1453.SUPP.SDK.ISPMLIB

MDH.V1453.SUPP.SDK.ISPPLIB

MDH.V1453.SUPP.SDK.LINK

32 Dimensions® CM

Step B Setting Up Security for a Dimensions for
z/OS Listener

This section describes how to set up RACF/USS security for your
Dimensions for z/OS listener.

Overview of Security
The Dimensions listener is a complex set of programs that run as an MVS
started task, but under that started task run as a series of dubbed USS
address spaces. The security environment is also complex. Incoming
requests for services from network users cause the initiation of library
server components (MDHLLBSV) that run as the individual user. The
parent tasks MDHLLSNR and MDHLPOOL run as a specific authorized user
ID with UID=0. This is the Dimensions execution user ID, which by
default is DMSYS. The Dimensions Execution user ID has the authority to
change the user ID to a user’s own user ID when starting a library server
for a specific user.

A library server is also started when using USS to hold product item
libraries. This library server executes as the Dimensions Execution user
ID. However, when defining a new item library, the user DMSYS is used
by default to create the item library container.

The instructions provided for this installation are for RACF. If you are
using alternate products consult the documentation or the vendor for
details on how to establish a security environment equivalent to the
recommended RACF environment.

There are several possible scenarios that you can use to run Dimensions.
These are discussed in the relevant IBM publications described below:

Dimensions for z/OS Guide 33

Topic Document Section

Introduction z/OS UNIX System Services Planning, GA22-7800-05 18.3

An unsatisfactory
security environment

z/OS UNIX System Services Planning, GA22-7800-05
Note:
If the BPX.SERVER (or BPX.DAEMON) FACILITY class
is not defined, your system has UNIX-level security
and the system is less secure. This level of security is
for installations where super user authority has been
granted to system programmers. These individuals
already have permission to access critical MVS data
sets such as PARMLIB, PROCLIB, and LINKLIB. These
system programmers have total authority over a
system. Server programs that run with super user
authority can issue a pthread_security_np()
service to change the MVS identity of a thread.
To establish UNIX-level security assign a UID of 0 to
the superuser, and assign a UID of 0 to the user ID
used for running server programs, for example,
DATASRVR. Do not define FACILITY BPX.DAEMON or
BPX.SERVER.

18.3.1

Recommended
security environment

z/OS UNIX System Services Planning, GA22-7800-05
Notes:
If BPX.SERVER (or BPX.DAEMON) FACILITY class is
defined, your system has z/OS UNIX-level security
and the system is more secure than a traditional UNIX
system. This level of security is for customers with
very strict security requirements who need super
users to maintain the file system but do not want
these users to have the authority to change their
identities to access existing MVS resources. To do this,
follow the additional steps described in Defining
servers to use thread-level security in topic 18.4.

18.3.4

Example z/OS UNIX System Services Planning, GA22-7800-05 18.4.1

NOTE IBM document details such as document name and section
number may vary between z/OS releases.

34 Dimensions® CM

Environment Checks

When Dimensions for z/OS components (the listener or pool) start they
perform the following system configuration checks on the environment:

 Check access to specified RACF resources that you can configure in
the MDHTDCFG member for the instance.

 Check program control status that is performed by querying a
specific offset in a specific control block in the operating system.

 Check appropriate levels of access to all levels of the path that is
configured for your instance.

 Check that the USS time, adjust by the DMMVSTZ variable in the
Dimensions configuration file, is consistent with the MVS time.

 Check that there is sufficient region for the process to run in normal
operation.

These checks provide a fast way of determining if a change to your
environment has disabled your listener, and also help to create a proper
security environment. We recommend leaving these checks on.

The following variables control these environment checks:

 DM_MVS_START_CHK_RACF

 DM_MVS_START_CHK_DIRTY

 DM_MVS_START_CHK_PATH

NOTE

 Some scenarios described above are less secure than others but
may be applicable to your organization. We test only with the
recommended scenario. Other security arrangements are at the
customer's discretion and risk.

 The Dimensions execution user ID that is used when the started task
for an instance is initiated is specified by the use of a resource in the
RACF class STARTED. Specifically, you need to execute the following
command to define the relationship between the instance proc and
the user ID:

RDEF STARTED intance.instance STDATA(USER(execution userid))

Dimensions for z/OS Guide 35

 DM_MVS_START_CHK_CONSOLE

 DM_MVS_START_CHK_LOG

 DM_MVS_START_ABEND_DIRTY

 DM_MAX_LOCAL_TIME_DIFFERENTIAL

 DM_MVS_START_QUIET

For details about setting these variables, see page 67.

Program Controlled Libraries

The list of libraries that needs to be program controlled depends on:

 The z/OS level.

 The maintenance applied to the Language Environment and other
libraries.

 The Dimensions release.

 The naming conventions applied by the system programmers who
have installed your z/OS system.

Different libraries are required and will change in the future therefore
IBM has amended RACF to issue a more meaningful message to indicate
which library was contaminating a clean environment.

Examine the following data set names when you are checking for
Program Control (the names may not be the same on all sites):

Library Description

MDH.V1453.MDHLLIB Main programs for Dimensions

MDH.V1453.MDHLLPA DLLs for Dimensions

CEE.SCEERUN Language Environment runtime library

CEE.SCEERUN2 Language Environment runtime library

CBC.SCLBDLL Code required to support the template
library classes

CBC.SCLBDLL2 Code required to support the template
library classes

36 Dimensions® CM

Detailed Environment Checking

We provides a utility, MDHLCKSM, that checks that your security
environment is correct and helps you to locate and fix environmental
problems. Install MDHLCKSM in the same libraries as the product.
MDHLCKSM will try to switch users and should fail in the same way but
with more control.

Submit the following JCL in a security environment that starts the job as
USER-A and tries to switch to USER-B (your RACF administrator may
need to give your user ID access to the profile USER-A.SUBMIT in class
SURROGAT or equivalent if you cannot log in as USER-A):

//jobname JOB 'TEST ENVIRONMNT',MSGCLASS=X,REGION=0M,
// USER=USER-A
//*
//MDHLCKSM EXEC PGM=MDHLCKSM,REGION=64M,
// PARM='POSIX(ON)/debugsetup'
//STEPLIB DD DISP=SHR,DSN=MDH.V1453.MDHLLIB
// DD DISP=SHR,DSN=MDH.V1453.MDHLLPA
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//INPUT DD DATA,DLM=ZZ
log to console by uncommenting the line below
#
CONSOLE
#
1 - user ID to switch to
#========================
#
(leave a blank line to not switch at all)
#
user-b
#
2 - passwd for above user
#=========================
#
(leave a blank line to not switch at all)
#
passwrd
#
#
3 - USS test file
#=========================
#
code this to test file creation
access from child
(leave a blank line to not test)
#
/tmp/a.txt
#

Dimensions for z/OS Guide 37

4 - MVS test file, as above.
#=========================
#
#
code this to test file creation
access from child
(leave a blank line to not test)
#
foo.bar.file
#
5 - exec test program to execcute
#=========================
#
use /path/to/uss/program
#
This should be pointing at the
symlink to the dmchksum program:
#
/<dimension-home>/prog/dmchksum
#
(leave a blank line to not test)
#

#
6 - racf facility checks
#=========================
#
#<-----> 8 bytes RACF Class name
<-----------------------------> resource name
FACILITYBPX.DAEMON
FACILITYBPX.SUPERUSER
FACILITYBPX.FILEATTR.PROGCTL
ZZ
//*

38 Dimensions® CM

Step B-1 Setting Up RACF/USS Security
This step describes how to setup RACF/USS security and to make the
programs in the following libraries program controlled:

 MDH.V1453.MDHLLPA

 MDH.V1453.MDHLLIB

To setup RACF/USS security:

1 If your system does not have the class PROGRAM activated you may
need to activate it using the following TSO command:

SETR CLASSACT(PROGRAM)

2 Add the program control profile using the following TSO commands:

RDEF/RALT PROGRAM * ADDMEM('MDH.V1453.MDHLLPA'/*/
NOPADCHK) UACC(READ)

RDEF/RALT PROGRAM * ADDMEM('MDH.V1453.MDHLLIB'/*/
NOPADCHK) UACC(READ)

where the asterisk before NOPADCHK is used for SMS controlled
catalogued data sets. Use a VOLSER if the libraries are not under
SMS control.

Use RALT to add more libraries to the '*' profile.

Use RADD to add the '*' profile.

3 Use the TSO ISRFIND command to locate the following DLLs:

COLL
COMPLEX
IOC
IOSTREAM

To make all of these DLLs program controlled use the following TSO
command:

RALT PROGRAM * ADDMEM('<dataset to contain program-
controlled members>'/*/NOPADCHK)

Dimensions for z/OS Guide 39

An alternate method is to add each DLL separately using the RDEF
command and to specify UACC(READ):

RDEF PROGRAM <program> ADDMEM('SYS.SCLBDLL'/*/
NOPADCHK) UACC(READ)

where <program> is COLL, COMPLEX, IOC, or, IOSTREAM

4 Refresh the RACF profiles using the following TSO command:

SETR WHEN(PROGRAM) REFRESH

5 If you want programs such as MDFLISPF loaded as READONLY, issue
the following console command to authorize the data sets
MDH.V1453.MDHLLIB and MDH.V1453.MDHLLPA:

setprog apf,add,dsn=MDH.V1453.MDHLLIB,SMS
setprog apf,add,dsn=MDH.V1453.MDHLLPA,SMS

where * is any SMS controlled catalogued data set of the specified
user. Use a VOLSER if the libraries are not under SMS control.

NOTE These DLLs are shipped by IBM and might be in
CBC.SCLBDLL or CBC.SCLBDLL2, though the location may be
different on your system.

NOTE Program control is described in the z/OS UNIX System
Service Bookshelf, in particular in the z/OS Security Server RACF
Security Administrator's Guide.

NOTE

 This configuration change will not survive an IPL and should be
made permanent by the system programmer. You may use an
automation tool to issue the required MVS commands after the
IPL has nearly completed.

 If you are going to run Dimensions Build using the SBEM
(Secondary Build Execution Monitor) you need to perform this
step so that the SBEM can execute authorized programs such as
TSO.

40 Dimensions® CM

The Relationship between the SBEM and MDHLCOMP

If you have authorized the library MDH.V1453.MDHLLPA or loaded the
contents of MDHLLPA into ELPA, you need to either authorize the library
MDH.V1453.MDHLLIB, or the programs MDHLLSBEM and MDHLCOMP
both need to be relinked AC(0). If you do not do this, the SBEM, which is
part of Dimensions Build, will fail with a message saying that MDHLCOMP
cannot be loaded. We recommends authorizing MDH.V1453.MDHLLIB.
This will enable the SBEM to run authorized programs, although you can
control which users can do this via a separate RACF resource in the class
FACILITY. For details about the Dimensions Build utilities including the
SBEM and its security environment, see appendices C and D in the
Dimensions Build online help.

Dimensions for z/OS Guide 41

Step C Setting Up an Instance of Dimensions
for z/OS

Overview of Setup
An instance of Dimensions for z/OS is a listener running on a specific port
with a Dimensions configuration file MDH.iiii.MDHPARM(MDHTDCFG), a
collection of support data for the ISPF client, the batch client, and
possibly a local metadata server. You can define multiple instances, for
example:

 To run test instances next to a production instance.

 In an environment where multiple LPARs are using Dimensions.

At any time on a specific LPAR there may be a principal instance. The
principal instance differs from other instances in that its DLLs and other
heavily used modules are typically taken from the ELPA (Extended Link
Pack Area). This method significantly improves Dimensions performance
as the clients share code with each other, and with the listeners and
batch components. Shared memory is counted as system overhead not
as user code. Secondary instances using the same code base can also
use ELPA.

Dimensions runs mainly in the MVS native file system.

Templated Installation

The templated installation is a method for using a template to set up an
instance of Dimensions for z/OS. The template is a file containing
variables that you can configure. When you run the template it is
processed by the templating engine and produces instance data sets
containing all the information that is required to successfully run an
instance of Dimensions for z/OS. The instance includes a library of
templates.

T

NOTE The userid used to run a templated install must have UID(0).

IMPORTANT! A templated instance installation is the only supported
method of installing a listener instance.

42 Dimensions® CM

There are three types of variables that you can configure in the template:

 Global variables

Global variables specify parameters such as the Dimensions version
number and the high, intermediate, and low level qualifiers used to
install the code.

 Instance variables

Instance variables specify parameters such as the port number,
instance name, SVC number, and the PROC for starting the
Dimensions listener.

 Metadata variables and local controls

Dimensions uses local metadata to support local operations such as
auditing and build areas. Metadata is information about the objects in
the local file systems that relates to a single Dimensions server. For
more details see Appendix D, "Setting Up Dimensions Metadata" on
page 219.

The templated installation can optionally create your metadata data
set. You also have the option to manage local metadata via a local
metadata server, which can be created by the templated installation.

The next step explains how to configure the variables.

CAUTION! If you re-run the templated installation all the custom
settings that you have made since the last installation will be lost.

NOTE The templated installation assumes that the code is located in
MDH.V1453.**. If you have relocated or renamed the location of the
release you must rename it in the following variables in the template
job:

 DMCDHLQ

 DMCDILQ

Dimensions for z/OS Guide 43

Step C-1 Customizing Variables in the
Installation Template Job
This step describes how to configure the global, instance, and metadata
variables in the installation template job.

To customize variables in the installation template job:

1 Copy the JCL from MDH.V1453.MDHCNTL(MDHJINTT) to a private or
temporary data set.

2 Open the JCL for editing.

3 Use the guidelines in the table below to customize the variables:

Variable name Details

DMINHLQ Type: Global

Default: MDH

Description: Specifies the high level qualifier of the parameter
files for this instance. This qualifier does not have to
be the same as the code base HLQ specified in the
variable DMCDHLQ.

DMVER Type: Global

Default: 1452

Description: Specifies the version number of the Dimensions
release. Do not change this value.

DMCDHLQ Type: Global

Default: MDH

Description: Specifies the high level qualifier where the code is
installed.

DMCDILQ Type: Global

Default: V%DMVER

Description: Specifies the intermediate and low level qualifiers
where the code is installed (from the end of the HLQ
to the last qualifier). For example:

<DMCDHLQ>.<DMCDILQ>.MDHLLIB
<DMCDHLQ>.<DMCDILQ>.MDHLLPA

 (Sheet 1 of 8)

44 Dimensions® CM

Note: In the templated installation the variables DMVER, DMCDHLQ, and DMCDILQ are each defined
twice. Their definitions must match functionally. The syntax used for these definitions differs as the
interpreting tools are different (JES, templater, etc.).

DMCDLPA Type: Global

Values YES or NO

Default: NO

Description: Set this variable to YES if the modules in MDHLLPA
are installed into ELPA prior to any instance starting.
This process improves performance, reduces session
starting times, and dramatically reduces the memory
usage of Dimensions.
For a principal instance, you must add the contents
of MDH.V1453.MDHLLPA to ELPA. In
MDH.V1453.MDHCNTL(MDHJALPA) there is a sample
job that performs this function. You need to perform
this job, or an equivalent, on every IPL. However, it
is not possible to define the MDH.V1453.MDHLLPA
library as part of the ELPA concatenation as the
library is a PDSE, and PDSE functionality is not
available when the system starts up. Therefore, add
this command to the startup scripts after the main
MVS facilities have started.
If you are installing Dimensions for demonstration
purposes do not add the DLLs to the LPA and use
DMCDLPA=NO.
We recommend that you have a comprehensive
understanding of the mechanisms that MVS uses to
locate programs or load modules. For details see the
IBM z/OS V1R3.0 Assembler Services Guide, section
4.6.1.1.3.

DMINPORT Type: Instance

Default: 671

Description: Specifies the port number this instance will listen on.
Must be unique to this instance of Dimensions.

Variable name Details

 (Sheet 2 of 8)

Dimensions for z/OS Guide 45

DMINST Type: Instance

Default: MDHPROD

Description: Specifies the instance name and is used for:

 The name the operator uses to start and stop
the instance.

 Part of the name for the configuration data set.

 The last part of the path on USS for the
installation.

Must be all upper case on MVS and lowercase on
USS.

DMINILQ Type: Instance

Default: %DMINST.

Description: Specifies the rest of the qualifiers used to prefix for
the instance. The instance name is used by default.

DMINPATH Type: Instance

Default: /opentext/dimensions

Description: Specifies the first portion of the path used for the
USS side of the instance. The rest of the path is
constructed from the instance name. In a sysplex
this path, or at least the path used for DM_TEMP.
should be on a shared HFS structure available across
all members.
The path %DMINPATH./%DMINST. is the location
on the USS file system where the instance USS files
are placed. This directory may not be a mount point.
You can make %DMINPATH a mount point but using
the instance path as a mount point will cause
MDHJINTT to fail.

DMINSVCNO Type: Instance

Default: 244

Description: Specifies an SVC number. An SVC is required if you
are installing ChangeMan Builder.

Variable name Details

 (Sheet 3 of 8)

46 Dimensions® CM

DMOMHLQ Type: Instance

Default: OOM.V1010

Description: Specifies the qualifier where ChangeMan Builder for
z/OS is installed.

DMOMSRV Type: Instance

Default: http://<URL of knowledge base server>:58080

Description: Specifies the URL of the ChangeMan Builder
knowledge base server.
Note: this control is deprecated in Dimensions 12.x.

DMINCPSERVER Type: Instance

Default: 819

Description: Specifies special character mapping for various
codesets. You do not usually need to modify this
variable.

DMINCPMAINFRAME Type: Instance

Default: 1047

Description: Specifies special character mapping for various
codesets. You do not usually need to modify this
variable unless your mainframe is in a non-US locale,
for example, France or Germany.

DMMVSTZ Type: Instance

Default: None specified

Description: Set as for the TZ variable in any POSIX UNIX.
Examples are provided in the job.
For North American users this variable has become
considerably more complex since legislation was
introduced altering the period of daylight saving in
the USA. The listener checks that the MVS version of
local time and the time set by DMMVSTZ are
consistent and will not start if they are not the same.
Use the variable
DM_MAX_LOCAL_TIME_DIFFERENTIAL to set the
maximum time difference that is tolerated between
the MVS and USS versions of the time.

Variable name Details

 (Sheet 4 of 8)

Dimensions for z/OS Guide 47

DMINLCSRV Type: Instance

Default: <DNS name of dimensions server>:671

Description: Specifies the DNS name and port number of your
distributed Dimensions server. You can use an IP
address if DNS services are not available. This server
will proxy license requests.

DM_MAX_LOCAL_TIM
E_DIFFERENTIAL

Type: Instance

Default: 2 seconds

Description: When starting an MVS Dimensions listener, this
variable specifies the maximum time difference (in
seconds) that is tolerated between the MVS and USS
versions of the time. These values can differ in the
following situations:

 TZ is mis-configured for daylight saving. The
difference is typically about 3600 secs.

 A manual process in some hardware
configurations when setting the MVS time. The
difference is typically a few seconds.

NOTES

 If the actual time difference exceeds the
permitted time difference, the listener will not
start without manual intervention. This is
important if an error in the configuration
means a mismatch has occurred over daylight
saving changes, or if an operator has repeated
an IPL on a partition and misread the time.

 Modest differences in the times can result in
processing errors. For example, the date and
time is used when performing 'need to
recompile' checks and the system might decide
that an item does not need to be recompiled.

 Adjusting the acceptable tolerance is
accompanied by a certain degree of risk. You
need to trade off the cost of getting the system
date/times adjusted to accord more exactly
with each other against the risks of introducing
a problem.

Variable name Details

 (Sheet 5 of 8)

48 Dimensions® CM

DMINSPECIALS Type: Instance

Description: Specifies local EBCDIC codepoints for special
characters:
Position Character Description of Glyph
1 # Number sign
2 $ Dollar sign
3 @ 'at'
4 [Left bracket
5] Right bracket
6 { Left brace
7 } Right brace
8 ^ Circumflex
9 ~ Tilde
10 ! Exclamation mark
11 | Vertical line
12 \ Backslash
13 ` Grave accent
For example, to set special characters for EBCDIC
1047 you need to specify the following value for
each position:
Position Character
1 7B
2 5B
3 7C
4 AD
5 BD
6 C0
7 D0
8 5F
9 A1
10 5A
11 4F
12 E0
13 79
The syntax for this example is:

)SET DMINSPECIALS=7B 5B 7C AD BD C0 D0 5F A1
5A 4F E0 79

Variable name Details

 (Sheet 6 of 8)

Dimensions for z/OS Guide 49

DMLOCSRVPORT Type: Metadata

Values: Port number (integer)

Default: 4524

Description: Specifies the port that the local metadata server
uses.

DMLOCSRVHOST Type: Metadata

Values: IP address (IPv4) or DNS name.

Default: localhost

Description: Specifies the name of the LPAR where the local
metadata server is running.
Note: Do not leave this as localhost if your
installation runs a sysplex as jobs might start as any
member of the sysplex.

DMPRCLIB Type: Instance

Default: USER.PROCLIB

Description: Specifies where a PROC for starting the Dimensions
listener is installed.
Note: You organization may have installation
standards about where procedures for started tasks
go on your system. If you do not have authority to
update these procedures, you need to direct this
part of the installation to a private library.

DMMTMAK Type: Metadata

Values: YES or NO

Default: NO

Description: Specifies if the metadata container is to be rebuilt.
There are two ways that you can define metadata:

 Separate local metadata for each instance.

 A global local metadata file for the whole
installation.

If you set DMMTMAK to YES the existing metadata
container defined by DMMTDSN is deleted and
rebuilt. If you set DMMTMAK to NO the container for
local metadata is not rebuilt.

Variable name Details

 (Sheet 7 of 8)

50 Dimensions® CM

DMMTGLOB Type: Metadata

Values: YES or NO

Default: NO

Description: Specifies if global local metadata will be used.
Notes:

 The values of the variables DMMTDSN,
DMMTMAJ, and DMMTMIN are automatically set
according to the value that you specify for
DMMTGLOB. However you can modify these
variables if required.

 An instance metadata data set is appropriate
for test or demonstration environments.

 Global metadata is appropriate where you are
setting up your production z/OS listener.

DMMVSP Type: Metadata

Values: Name of PROC for local metadata server.

Default: MDHDnnnn where nnnn is the LMDS port.

Description: This value names the PROC used to start and stop
the local metadata server. For details see "The Local
Metadata Server" on page 223.

Variable name Details

 (Sheet 8 of 8)

Dimensions for z/OS Guide 51

Matching Global Variables

The following variables in the JCL and SYSIN template must match:

 //SETS SET DMVER and)SET DMVER

 //SETS SET DMCDHLQ and)SET DMCDHLQ

 //SETS SET DMCDILQ and)SET DMCDILQ

 //SETS SET DMINHLQ and)SET MDH

The example below illustrates the locations in the template of the
variables that must match:

52 Dimensions® CM

Dimensions for z/OS Guide 53

Step C-2 Running the Templated
Installation Process
Run the template job MDHJINTT from your private or temporary data set
and check the return codes. The code 0 implies that the template ran
successfully and the instance was installed.

Step C-3 Setting Up Instance Security
This step describes how to setup security for your installation of
Dimensions for z/OS.

To set up security:

1 Check that there is a FACILITY BPX.DAEMON object in your RACF
database. The listener Dimensions execution user ID must be
authorized (READ) to this profile.

2 The started task for the listener needs to have the current
Dimensions execution user ID assigned by the operating system
when the task is started. There are standard mechanisms to do this
with MVS, the easiest being to use a resource that identifies the
PROC in the class STARTED. To use this mechanism issue the
following command:

RDEF STARTED procname.procname STDATA(USER(userid)
TRUSTED(NO))

where:

• procname is the name of the Dimensions instance you are
starting.

• userid is the Dimensions system USERID.

3 Issue the following command:

SETR REFRESH RACLIST(STARTED)

54 Dimensions® CM

Step C-4 Starting the Local Metadata Server
To start a Dimensions metadata server:

S <metadata server name>

Step C-5 Starting the z/OS Instance
To start a Dimensions instance issue the following command at a
console:

S <instance procname>

On startup messages are issued to the job log of the starting process.
Other messages are issued to SYSLOG for the sub-tasks. These
messages do not appear in any job log and might not appear if you have
suppressed ROUTCDE 11 messages to SYSLOG. Inspect these messages
carefully on the first start up as they indicate where problems have been
encountered. Typical problems include:

 Not connecting to a Dimensions server to get a license.

 Security problems with the program controlled environment.

 Security problems on the USS side. You can control routing codes for
messages in the MDHTDCFG member of the instance. You can also
have the listener only report error conditions at start up, which
considerably reduces the volume of console messages.

Dimensions for z/OS Guide 55

Step C-6 Setting Up Mainframe Network
Nodes
This step describes how to create the following network node definitions
for a z/OS mainframe in the Dimensions CM Administration Console:

 A physical network node for the USS side of your z/OS mainframe
where the Dimensions listener resides (see below).

 A logical network node and connection for the USS file system (see
page 56).

 A logical network node and connection for the MVS file system (see
page 58).

To setup a physical z/OS mainframe network node:

1 In the Administration Console, go to Distributed Development >
Network Administration > Network nodes.

2 In the toolbar, click New and select Physical Network Node.

3 In the New Physical Node dialog box, specify the following:

• For Physical Node Name enter the physical name of your
z/OS mainframe machine.

• From the Operating System list, select UNIX.

• From the Contact list, optionally select a contact name.

• For Description optionally enter a description of this node, for
example, USS physical node for <machine name>.

4 Click OK. The new physical network node is displayed in the
navigation pane.

5 To assign a network object to the physical node, in the navigation
pane, select the physical network node you have just created. In the
content area, in the Network Object section, click Add New Object.

The Assign Node Object dialog box opens.

NOTE You can also use dmcli, the Dimensions CM command-line client,
to setup network nodes. For details, see the Network Administration
section of the Administration Guide.

56 Dimensions® CM

6 From the Network Object Name list do one of the following:

• Select an existing network object. The other fields in the dialog
box are automatically populated.

• To define a new object, in the Network Object Name field enter
a name or port number. This object can be a named port such as
pcms_sdp, or a port number such as 671. Do the following:

• For Description optionally enter a description of the network
object.

• For Process optionally enter the network object process
name.

• From the Protocol list, select a network protocol.

7 Click OK to assign the network object to the node.

To setup a logical z/OS mainframe network node and connection
for the USS file system:

1 In the Administration Console, go to Distributed Development >
Network Administration > Network nodes.

After

NOTE The following diagram illustrates a correctly configured node
connection between a server and a logical USS node with a listener
running on port 671.

Dimensions for z/OS Guide 57

2 In the toolbar, click New and select Logical Network Node.

3 In the New Logical Node dialog box do the following:

• For Logical Node Name enter a unique name for this logical
node.

• From the Physical Node list, select the physical mainframe node
that you defined previously.

• For Description optionally enter a description of this node, for
example, USS logical node for <machine name>.

4 Click OK. The new logical network node is displayed in the navigation
pane.

5 From the expandable sidebar menu, select Distributed
Development > Network Administration > Network
connections.

6 In the toolbar, click New. The Register Client Server Connection
dialog box opens.

7 From the Client Node list, select the client node that requires access
to the server node.

8 From the Server Node list, select the physical mainframe node that
you defined previously.

9 From the Server Logical Node list, select the USS logical node that
you defined above in step 3.

10 From the Protocol list select a network protocol.

11 From the Network Object list, select the network port that the
mainframe is listening on.

12 From the File System list, select OS.

13 From the Code Set list, select the code set your mainframe uses to
encode characters. If you are not sure which code set to use, consult
your systems administrator.

14 Click OK. The node connection for the USS file system is added to
the list of connections in the navigation area.

58 Dimensions® CM

To setup a logical z/OS mainframe network node and connection
for the MVS file system:

1 In the Administration Console, go to Distributed Development >
Network Administration > Network nodes.

2 In the toolbar, click New and select Logical Network Node.

3 In the New Logical Node dialog box, specify the following:

• For Logical Node Name enter a unique name for this logical
node.

• From the Physical Node list, select the physical mainframe node
that you defined previously.

• For Description optionally enter a description of this node, for
example, MVS logical node for <machine name>.

4 Click OK. The new logical network node is displayed in the navigation
pane.

After

NOTE The following diagram illustrates a correctly configured node
connection between a server and a logical MVS node with a listener
running on port 1010.

Dimensions for z/OS Guide 59

5 From the expandable sidebar menu, select Distributed
Development > Network Administration > Network
connections.

6 In the toolbar, click New. The Register Client Server Connection
dialog box opens.

7 From the Client Node list, select the client node that requires access
to the server node.

8 From the Server Node list, select the physical mainframe node that
you defined previously.

9 From the Server Logical Node list, select the MVS logical node that
you defined earlier.

10 From the Protocol list, select a network protocol.

11 From the Network Object list, select the network port that the
mainframe is listening on.

12 From the File System list, select MVS.

13 From the Code Set list, select the code set your mainframe uses to
encode characters. If you are not sure which code set to use, consult
your systems administrator.

14 Click OK. The node connection for the MVS file system is added to
the list of connections in the navigation pane.

Step C-7 Verifying the Installation of the
Instance
The procedures below describe how to verify the installation of your
Dimensions instance.

To verify the installation of the instance:

1 Start the instance as described in "Operating a Dimensions Instance"
on page 97.

2 If you need to receive system messages start the syslog daemon.
For details see page 231.

3 Follow the other procedures below to verify that the Dimensions for
z/OS listener can communicate correctly with a Dimensions server.

60 Dimensions® CM

To log in to an MVS node from desktop client:

1 On a Windows machine, log in to the Dimensions CM desktop client.

2 From the File menu, select Remote Node Log In. The Remote Node
Log In dialog box opens.

3 From Physical Node list choose an MVS logical node or click Add
and type the name of an MVS node.

4 For User ID type a user ID for an MVS node.

5 For Password type the password for the user ID.

6 Click Login. If you used an invalid user ID and password combination
the following message is displayed in the Console window:

Error: User authentication failed

To fetch data from an MVS node to a Dimensions project:

1 On a Windows machine, log in to the Dimensions CM desktop client.

2 From the File menu, select New and select Item. The New Item
dialog box opens.

3 Select Create Item using specified workfile/folder and type
<MVS logical node name>::dataset(new)

4 From the Item Type list select SRC.

5 From the Item list choose TEXT.

6 Click the Advanced tab.

7 In the Filename field change the filename of the item to a Windows
style format.

8 Click Create. An MVS style item should be created in Dimensions,
which you can then browse in desktop client.

NOTE If you execute an AUTH command against a physical node
name, you are connected on the same port that the server is using.
If you have another listener instance running on MVS on that port,
you may get a false positive. Therefore, always use logical node
names for authentication.

Dimensions for z/OS Guide 61

Step D Installing the ISPF Client for an
Instance

Step D-1 Setting Up the ISPF Client for an
Instance
This step describes how to set up your Dimensions for z/OS client as part
of your ISPF environment.

The ISPF client enables you to access Dimensions from the TSO/ISPF
environment. You can install the ISPF client for each instance of
Dimensions. When the ISPF client is running it uses a specific instance of
Dimensions. You can manage which instance to use from the invocation
of the client.

The ISPF client normally runs POSIX(OFF) and this enables you to open
multiple ISPF client screens simultaneously.

The ISPF client is closely tied to the related Dimensions listener instance
and has the following characteristics:

 Shares DLLs with the Dimensions listener and accesses the
MDHTDCFG member for symbols defined as part of instance
configuration.

 Has the same environment structure defined by
MDH.iiii.MDHPARM(MDHTDIMV).

 Shares the file MDH.iiii.MDHPARM(MDHTSVCE).

To run the ISPF client you need to establish load libraries from which to
load the programs. You cannot use LIBDEF but must do one of the
following:

 Include the MDHLLIB and MDHLLPA libraries in the linklist.

 Modify the TSO LOGON proc to allocate the load libraries via
STEPLIB.

 Use the supplied ISPF CLIST to start ISPF:

ex 'MDH.iiii.PARM(MDHCISPF)'

62 Dimensions® CM

In the example above, the script 'MDH.iiii.MDHPARM(MDHCISPF)'
executes after the allocations are made by ISPFPROC. If this method is
not supported by your environment, exit from ISPF and run the allocation
CLIST/REXX at the TSO READY prompt. However, in such an environment
you should use the static allocation method.

After you have started ISPF you can add a selection that invokes the ISPF
client. You can do this in a number of ways and an example is provided in
the CLIST MDFCSDIM. A tailored revision of this CLIST is constructed by
the templated install and is placed into:

MDH.iiii.PARM(MDHCSDIM)

To use this CLIST from a panel copy it to an ISPF common library.
Alternatively, panels can invoke it by naming its full name in the PARM
library.

To support multiple instances running on a simple code base you will
need to customize MDH.iiii.PARM(MDHCSDIM).

NOTE

 If the MDHLLPA library is in the LPA it is automatically available to all
programs for loading modules. You should omit it from the linklist or
the logon proc.

 MVS system programmers can perform these tasks differently in
accordance with accepted installation standards.

Dimensions for z/OS Guide 63

Linking to the Client from a Panel

If you have a suitable execution environment (your DLLs are not loaded
into ELPA and you have added your MDHLLPA library for the code base to
the search order for this TSO session), you can embed the following code
example into an existing or new ISPF selection menu:

In the)BODY section of the panel add the following:

%opt - Start Dimensions ISPF Client

In the)PROC section of the panel, in the
&ZSEL=TRANS(TRUNC(&ZCMD,'.') statement, add the following:

opt,'CMD(EX ''insthlq.instilq.PARM(MDHCSDIM)'' +
''POSIX(OFF)'')'

and replace insthlq and instilq with the appropriate values from your
instance installation.

ISPF Tables Services

In the ISPF panels, Dimensions uses ISPF table services to save log in
information. For ISPF table services to work properly you must allocate a
table data set (PDSE, FB=80) to DD ISPTABL and ISPTLIB. This
allocation is performed automatically by MDFCSDIM.

ISPTABL is used when a table write is issued and can only contain a
single data set in its allocation. ISPTLIB is used when a table read is
performed and can contain multiple data sets in its allocation. It is
important that the first data set for the ISPTLIB concatenation is the
same as that used for ISPTABL.

Each Dimensions user must have a table library allocated, preferably
their own personal data set. MDFCSDIM automatically creates a table
library. For details see the z/OS ISPF Dialog Developer's Guide and
Reference in the z/OS ISPF Online Product Library Bookshelf.

64 Dimensions® CM

ISPF Quick Start

To use Dimensions for z/OS immediately after using the templated install
process to install your instance, do the following:

1 Exit to the Ready prompt.

2 Enter:

EX 'MDH.iiii.PARM(MDHCISPF)'

3 To start the ISPF client for your instance choose option 6 and enter:

EX 'MDH.iiii.PARM(MDHCSDIM)'

Step D-2 Verifying the ISPF Installation
This step describes how to verify the ISPF installation and test the ISPF
environment you have set up.

To verify the ISPF installation:

1 If you have used the sample TSO MDFPMENU panel, use the debug
option at the top right to initiate a TSO trace.

2 Choose the instance you are testing and enter the ISPF client. The
log in panel should appear.

3 Type your log in details. If you are running the listener on a different
port to the one used by the server, add the port number to the
Server field, for example:

<server DNS name>[:port number]

NOTE The first time you use the debug option it may be preceded
by allocation messages.

Dimensions for z/OS Guide 65

4 Press Enter. If DNS look up is successful, the ISPF client does the
following:

• Searches its network administration structures for the Dimensions
logical node that you specified.

• Attempts to connect to the logical node using the mainframe log
in details that you specified.

• Queries and displays the project in ISPF client.

To log out of ISPF client press <END>, type 'Y', and press Enter.

Optional Installation Steps

Installing the Watcher SVC Exit
The Watcher SVC Exit provides a general method of examining SVC calls
and is used by the z/OS build agent for dependency monitoring.

IMPORTANT! In 14.x this SVC has changed and should be reinstalled.
It is compatible with earlier versions of Dimensions. If you do not make
this change some error conditions may not be detected.

The program MDHLWTSV is a type 4 SVC that uses SVC screening to
permit determination of dependencies. You must install MDHLWTSV
according to the rules for installing a type 4 SVC. For more details of
these rules see the following IBM documents:

 MVS Initialization and Tuning Guide (document number SA22-7591)

 MVS Initialization and Tuning Reference (document number SA22-
7592)

NOTE Watcher SVC Exit is only required if you are using Dimensions
Build.

66 Dimensions® CM

To install SVC exit:

1 Review and run the JCL member MDHJSVCI contained in
MDH.V1453.MDHCNTL. MDHJSVCI copies MDHLWTSV from
MDH.V1453.MDHLLIB to an LPA library that you specify. MDHJSVCI
also copies and renames the member MDHTSVSN to IEASVCSN in a
PARMLIB that you specify.

2 The SVC parameter file has a single line that is similar to the
following:

SVCPARM 244,REPLACE,TYPE(4),EPNAME(MDHLWTSV)

To activate the file you need to alter the IEASYSnn member used by
the installation for IPL-ing the LPAR so that it points at the members.
Do the following:

Replace

SVC=(n1,n2...)

with

SVC=(n1, n2...,SN)

in

IEASYSqq

3 Use of the SVC is controlled by a RACF resource. Issue the following
TSO command to create the resource SERENA.WATCH.SVC in the
class FACILITY:

RDEF FACILITY SERENA.WATCH.SVC UACC(NONE)

4 Schedule an IPL (CLPA) of the LPAR.

5 Issue the following TSO command to grant authorized users of
Dimensions Build READ permission to this resource:

PE SERENA.WATCH.SVC ID(<id>) ACCESS(READ)
CLASS(FACILITY)

where <id> specifies the credentials used by users and groups for
Dimensions deployment areas, or to build in private work areas.

After this command is issued, issue the following command to refresh
the RACLIST(FACILITY) profile:

SETR REFRESH RACLIST(FACILITY)

Dimensions for z/OS Guide 67

Customizing Variables in the Dimensions
Configuration File

This optional step describes how to customize the Dimensions for z/OS
variables in the Dimensions configuration file. You can use variables to
control:

 System settings

 Start up tests

 Start up messages

 MVS-based node connections

 Codepage conversion

 Automatic creation of data sets

To customize configuration variables:

1 Open the Dimensions configuration file for editing. The file is located
in the following data set:

MDH.V1453.MDHPARM(MDHTDCFG)

You can also edit the file from the following locations (where it is
called dm.cfg):

• (Windows): %DM_ROOT%

• (UNIX): $DM_ROOT

NOTE You can run the instance with the default variables. To change
the default variables follow the instructions below.

NOTE

 The variables have no effect on the USS side of the listener.

 To enable a variable, type YES. To disabled a variable, comment it
out using hash # as the comment character, or type NO.

68 Dimensions® CM

2 Use the guidelines in the table below to customize the variables.

NOTE Variables of the type Automatic creation of data sets control how
data sets are created. You can change the values in these variables and
specify other keywords such as UNIT() and VOLSER(). For more details
about the keywords that you can use see the TSO ALLOC command.

Variable name Details

DM_SKIP_SERVER_CRED_CHECK Type: System setting

Description: When explicit AUTH information is
absent this variable removes attempts
by a server to log in to a remote node
using its own user ID and password.

DM_MVS_RESTART_ON_ERROR Type: System setting

Description: Restarts the pool after an unexpected
crash. This may cause problems with
dumps and logs produced on MVS,
especially on an unattended system.
The default behavior does not restart
the process.

DM_MVS_TZ Type: System setting

Description: Controls time zone handling in the
Dimensions libsrv processes
(MDHLLBSV). Should be set to the
same string that a normal UNIX TZ
variable is set to. For information about
the strings that are permitted in this
variable see your UNIX documentation.

Example The following example specifies that a
mainframe runs in Pacific Standard
Time (PST) in the winter and in Pacific
Daylight saving Time (PDT) in the
summer:
DM_MVS_TZ PST08PDT07

 (Sheet 1 of 8)

Dimensions for z/OS Guide 69

DM_MVS_START_CHK_DIRTY Type: Start up test

Default: YES

Description: Enables a dirty address space check.
Checks the dirty bit 0x40000000 in
word at offset 0x116 in the current
TCB. The check fails if this bit is set.

DM_MVS_START_CHK_PATH Type: Start up test

Default: YES

Description: Checks that all levels of the path
specified by DM_ROOT exist and are
accessible.

DM_MVS_START_CHK_RACF Type: Start up test

Defaults: FACILITYBPX.DAEMON,
FACILITYBPX.SUPERUSER

Description: Checks that the current address space
has READ access to the specified
resource in the specified class. The
listener will not start if these classes
are not available to the user ID. This
symbol is a comma separated list of
fields. Each field is an eight character
class name and the resource name in
that class. If class name is shorter than
eight characters use spaces.

DM_MVS_START_ABEND_DIRTY Type: Start up test

Default: <userid>

Description: If a dirty address space is detected at
start-up the user ID that you specify is
used to test user ID switching. This
causes a RACF error message, and
possibly an ABEND, to appear on the
console with details of the module or
data set that has caused the problem.
This information can help you solve
problems and find libraries that are not
program controlled. If you do not use
this symbol the listener behavior is
unchanged.

Variable name Details

 (Sheet 2 of 8)

70 Dimensions® CM

DM_MVS_START_CHK_CONSOLE Type: Start up message

Default: YES

Description: Issues WTO messages to the console.

DM_MVS_START_CHK_LOG Type: Start up message

Default: /tmp/startuptext.log

Description: Logs start up messages to the specified
USS file.

DM_MVS_TRACE Type: MVS-based node connection

Default: YES

Description: Causes a trace of the MVS data set
handling logic to be recorded in the
SDP trace log.
Note: To be used with the assistance of
Support.

DM_MVS_DETAIL_TRACE Type MVS-based node connection

Default: YES

Description: Causes a very detailed trace of the MVS
data set handling logic to be recorded
in the SDP trace log.

DM_MVS_TIMINGS Type MVS-based node connection

Default: YES

Description: Causes timings from MVS to be
recorded in the SDP trace log.

DM_EVENT_TRACE Type: MVS-based node connection

Description: Logs detailed RPC events.
Note: To be used with the assistance of
Support.

Variable name Details

 (Sheet 3 of 8)

Dimensions for z/OS Guide 71

DM_MVS_CREATE_DATASETS Type: MVS-based node connection

Default: YES

Description: Allows data sets, including PDSs, to be
automatically created when you
perform a get operation to a data set
that does not exist. If you do not use
this option you must pre-allocate the
data sets.

DM_MVS_CREATE_USE_BLKSIZE Type: MVS-based node connection

Default: YES

Description: Causes a BLKSIZE value to be inserted
in the data set creation call. If not, the
system will be allowed to choose the
optimal value.

DM_MVS_CREATE_ISPF_STATS Type: MVS-based node connection

Default: YES

Description: Causes ISPF statistics in PDS members
to be fabricated if they do not already
exist in the object being extracted from
Dimensions.

DM_MVS_DELETE_TEMP Type: MVS-based node connection

Default: YES

Description: Allows the temporary files created
during normal operation to be
automatically deleted.

DM_MVS_REJECT_USERS Type: MVS-based node connection

Default: <userid1> <userid2>

Description: Prevents the specified user IDs from
logging in to the mainframe node.
Normally used to prevent the
Dimensions systems ID being used by a
Dimensions client to log in to a
mainframe node. Enter the user IDs in
upper case and separate multiple user
IDs with single spaces.

Variable name Details

 (Sheet 4 of 8)

72 Dimensions® CM

DM_MVS_CODEPAGE_SERVER
DM_MVS_CODEPAGE_MAINFRAME

Type: Codepage conversion

Defaults: DM_MVS_CODEPAGE_SERVER 819
DM_MVS_CODEPAGE_MAINFRAME
1047

Description: When a command is sent from a
Dimensions for z/OS client to a server,
for the command to be understood the
client must convert it to the ASCII
codepage of the server. For example, if
you assign the following codepage
numbers:
DM_MVS_CODEPAGE_SERVER 819
DM_MVS_CODEPAGE_MAINFRAME
1047
then all Dimensions for z/OS clients—
dmcli on USS, ISPF client on MVS, and
MDFLCMD (batch)—will use a mapping
from 1047 (EBCDIC) to 819 (ASCII)
when converting command strings sent
to a server.
You only need to perform this
customization when command strings
contain national characters.
For more information see page 213.

DM_MVS_CREATE_SPEC_SPC Type: Automatic creation of data sets

Default: cyl space(1,1)

Description: Use when a SPACE specification is
required.

DM_MVS_CREATE_SPEC_PDS Type: Automatic creation of data sets

Default: dir(5) dsorg(po)

Description: Use when a PDS is created. Supplies
any extra characteristics, such as
directory blocks.

DM_MVS_CREATE_SPEC_PDSE Type: Automatic creation of data sets

Default: dsntype (library)

Description: Use when a PDSE is created. Supplies
any extra SMS fields that are required.

Variable name Details

 (Sheet 5 of 8)

Dimensions for z/OS Guide 73

DM_MVS_CREATE_DEFAULT_PDSE Type: Automatic creation of data sets

Default: 1

Description: Causes container files that are created
to be PDSEs rather than PDSs.

DM_MVS_CREATE_DEFAULT_TEXT Type: Automatic creation of data sets

Default: FB(80)

Description: Supplies a default DCB (Device Control
Block) to any text format files that are
created. This variable has the syntax
RECFM(LRECL,BLKSIZE) although you
can omit blksize.

DM_MVS_CREATE_DEFAULT_BIN Type: Automatic creation of data sets

Default: FB(80)

Description: Supplies a default DCB to any binary
format files that are created. This
variable has the syntax
RECFM(LRECL,BLKSIZE) although you
can omit blksize.

Variable name Details

 (Sheet 6 of 8)

74 Dimensions® CM

DM_MVS_DATASET_DCB_PAT_n
PATTERN
DM_MVS_DATASET_DCB_DCB_n
PATTERN

Type: Automatic creation of data sets

Description: Specifies an array of patterns and DCB
strings in pairs, where n is a number
and PATTERN can be as follows:

 PATTERN—matches a pattern
anywhere in the name.

 <PATTERN—(left angle bracket)
matches a name that begins with
the pattern. For example,
<SOURCE. matches any source
code that begins with SOURCE.

 PATTERN>—(right angle bracket)
matches a name that ends with
the pattern. For example,
.COBOL> matches any source
code that ends with .COBOL.

 <PATTERN>—(right and left angle
brackets) matches a name that is
exactly the same as the pattern.
For example,
<USER.DATA.COBOL> matches
any source that is an exact
match.

For example:
DM_MVS_DATASET_DCB_PAT_1 <SOURCE.
DM_MVS_DATASET_DCB_DCB_1 VB(1024,10240)
DM_MVS_DATASET_DCB_PAT_2 .COBOL>
DM_MVS_DATASET_DCB_DCB_2 FB(80)
You can use n to control the behavior of multiple rules. Lower
numbers have priority and you can specify rules that are an
exception to the general rules.
In the example below, USER.DATA.SPECIAL is an exception
to the rule that follows it:
DM_MVS_DATASET_DCB_PAT_1 <USER.DATA.SPECIAL
DM_MVS_DATASET_DCB_DCB_1 FB(80)
DM_MVS_DATASET_DCB_PAT_2 <USER.DATA
DM_MVS_DATASET_DCB_DCB_2 VB(1024)

Variable name Details

 (Sheet 7 of 8)

Dimensions for z/OS Guide 75

Setting Up the Scripting Interface
This optional step describes how to setup dmpmcli for use with
Dimensions for z/OS.

dmpmcli is a scripting interface shell that provides a set of Java classes
that expose Dimensions components via a simple and consistent object
model. For more details see the Dimensions CM online help.

To set up dmpmcli:

1 Edit dmpmcli in the directory prog and set the correct DM_ROOT and
Java installation path.

2 Edit %DM_ROOT%/AdminConsole/classes/merant/adm/
dimensions/Dimensions.properties and specify values for your
local environment.

DM_MVS_START_QUIET Type: Instance

Default: NO

Description: Turns off mainframe agent messages
during startup apart from exceptions.

DM_MAX_LOCAL_TIME_DIFFERENTI
AL

Type: Instance

Default: 1

Description: The number of seconds by which USS
local time can differ from MVS local
time.

Variable name Details

 (Sheet 8 of 8)

NOTE dmpmcli is not certified or supported on Dimensions for z/OS
and is supplied as is as a courtesy to customers. Java™ 2 Runtime
Environment Standard Edition version 1.4.2 or higher is required to run
dmpmcli.

76 Dimensions® CM

3 Use FTP, or a similar application, to upload the following files in
binary from the server installation directory %DM_ROOT%/
AdminConsole/lib:

• commons-logging-api.jar

• darius.jar

• dmnet.jar

• js.jar

• servlet.jar

• xerces.jar

MVS Listener Memory Check
At startup the MVS listener checks the virtual storage limits that are
available to it. This check depends on the getrlimit call using the
RLIMIT_AS sub-function.

The following MDHTDCFG variables are used with this check:

 DMCDLPA (set to YES or NO): specifies if the listener is using ELPA.

 DM_LISTENER_REGION_ELPA: used if DMCDLPA is set to Y.

Default: 40M

 DM_LISTENER_REGION_STEPLIB: used if DMCDLPA is set to N.

Default: 75M

The getrlimit call returns a maximum limit (the hard limit) which is
usually 2147483647, but might be lower. The call also returns a soft
limit, which is typically related to the REGION specified for the user id, or
is coded in all the usual places. This second limit is compared with the
recommendation, and the message MDHVFS4200045W is issued if the
recommended size is greater than the soft limit reported by getrlimit.

The message MDHVFS4200045W has the following format:

MDHVFS4200045W Available memory is insufficient -
recommend <m1> but have <m2>/<m3>

Dimensions for z/OS Guide 77

Where:

 <m1> is the quantity of memory defined by the appropriate variable
(DM_LISTENER_REGION_ELPA or DM_LISTENER_REGION_STEPLIB)
obtained from the default or from the MDHTDCFG setting.

 <m2> is the hard limit reported by getrlimit.

 <m3> is the soft limit reported by getrlimit.

If this message is displayed you can:

 Increase the region for this STC.

 Alter MDHDCDFG settings for the related variable.

We recommend that you perform the first of the above steps and that
you run a production z/OS listener with the variable DMCDLPA set to YES
as this greatly reduces the memory usage of Dimensions.

If you code a lower limit in MDHTDCFG the listener may not work
correctly. However, for some remote functions it is possible that the
default limit will also be insufficient and will need to be increased. To
maximise the chance of everything working correctly you should code
REGION=0M and permit the address space user(s) access to be as large
an address space size necessary.

78 Dimensions® CM

Dimensions for z/OS Guide 79

Chapter 3
ISPF Client Quick Start Tutorial

Introduction
This section explains how to get started with the Dimensions for z/OS
ISPF client. The section has the following exercises:

Prerequisites
Before you start the tutorial check the following prerequisites:

 You have installed, configured, licensed, and started a Dimensions
server. For details, see the Installation Guide.

 You have installed and licensed Dimensions for z/OS on a mainframe
machine. For details, see page 19.

 You have setup the following Dimensions network nodes:

Log In to Dimensions 80
Take a Quick Tour of the Menus 84
Create a New Project and Directory 86
Set the Project and Project Root 87
Change Directories 89
Create a New Item 89
Browse the Item 91
Check Out the Item 92
Undo the Check Out 94
Action the Item 94
Display Help Panels 95
Log Off from Dimensions 96

80 Dimensions® CM

• A physical network node for the z/OS machine where the
Dimensions listener resides.

• A logical network node and connection for the MVS file system.

For details about setting up mainframe nodes see page 55.

Exercise 1 Log In to Dimensions
In this exercise, log in to the Dimensions for z/OS ISPF client.

To log in to Dimensions:

1 Start a mainframe TSO session.

2 In the ISPF Primary Option Menu enter the option number allocated
to Dimensions and press Enter. The Dimensions ISPF client log in
panel opens.

3 Enter your log in information (ask your Dimensions administrator for
details), for example:

Dimensions for z/OS Guide 81

A Profile: enter a name for this connection profile. A log in
profile enables you to save a set of log in parameters for a
specific machine and user ID. Profiles save you time as you do
not have to re-enter the log in information each time you log in
to the same machine.

B

User Name: enter a user ID that is registered on the
Dimensions base database that you need to log in to. The user
ID is typically your enterprise LAN log on.

C User Password: enter the password for the user ID that you
entered in the User Name field. If the password contains
special characters, such as @ and #, the setup of the keyboard
codepage for your emulator may affect these characters.
Passwords are case-sensitive.

D Dimensions Server: enter the Dimensions server. If your
mainframe can use symbolic names for TCP/IP addresses
(defined by a HOSTS file, DNS, or DHCP), use the symbolic
name for your Dimensions server machine. The symbolic name
may require domain information. If your mainframe cannot use
symbolic names, enter the IP address of the server.

You can also specify a port in the address of the server, which
can be a port number or a name. The syntax for using a port is
<url>:<port> and the default port number is 671.

If your listener is running on a non-standard port and your
server is using a standard port, or vice-versa, you may have to
specify a port.

Examples:

 mycompany.com:671

 mycompany.com:sdp

Tip: To test the connection to a Dimensions server platform,
enter TSO PING <address> at the command prompt, where
<address> can be a DNS name or an IP address. If a
connection is established using TSO PING it should also work
with the Dimensions log in panel.

E Database Name: enter the name of the database that you
want to connect to on the Dimensions server.

82 Dimensions® CM

4 Press Enter. You can monitor the progress of the log in script in the
top right corner of the panel.

After you have log in successfully, the ISPF client main panel is
displayed and looks similar to this:

F Database Connection: enter the database connection string.
This information is required to setup a connection to the data
source that Dimensions uses to access the database you
specified in the Database Name field.

G Node Name: enter the Dimensions logical network node, on
the MVS side, of the actual machine or LPAR that you are
currently logged into under TSO. This logical node must be
defined in the Dimensions database (ask your Dimensions
administrator for the correct name). Do not use the DNS name
for the machine you are logged into. This may appear to log in
successfully but will cause errors when you attempt
Dimensions operations.

If no Dimensions listener is running on your LPAR, but there is
a listener on a different LPAR in the SYSPLEX that shares the
DASD storage and catalog that you are using, you can specify
that listener's logical MVS network node name. You do not need
TSO/ISPF access to that LPAR.

H User ID: enter the z/OS user ID for the machine you are
currently logged into under TSO.

I User Password: enter the password for the user ID you
entered in the User ID field. The case of the password may be
important depending on how your security system is set up. To
use national characters, such as @ and #, the emulator
codepage must be correct.

Dimensions for z/OS Guide 83

A Menu bar

B TSO command line prompt

C Connection status

D Project details

E List of sub-directories and files in the current directory.
Directories and sub-directories and are identified by a plus
sign '+' to the left of the directory name.

84 Dimensions® CM

Exercise 2 Take a Quick Tour of the Menus
In this exercise, take a quick tour of the ISPF client menu items not
covered by this tutorial.

To take a quick tour of the menus:

1 Click the File menu. The File menu has the following options:

• Node Login: enables you to log in to a remote node.

• Change password: enables you to change the password for a user
ID on a specific mainframe node.

• Browse Log: enables you to browse the Dimensions ISPF client log
file.

• Logoff/Exit: enables you to log off the ISPF client.

2 Click the Item menu. The Item menu has the following options:

Apart from the Create option, all the other options enable you to
perform group actions on multiple items that you have selected. For
details see page 114.

Dimensions for z/OS Guide 85

3 Click the Commands menu. The Commands menu has the following
options:

• Browse Request: enables you to send a request to a temporary
data set, invoke the ISPF Editor, and print the document.

• Batch commands: enables you to specify a data set containing
Dimensions commands and process them in batch mode.

• Set Project Root: enables you to specify the project root for the
current project.

4 Click the Build menu. The Build menu has the following options:

The Build menu enables you to build the current project, a request,
or a baseline. For details about build see page 115.

5 Click the Settings menu. The Settings menu has the following
options:

• Preferences: enables you to set preferences for the ISPF client.

• Current View: enables you to configure the display of the ISPF
client main panel.

86 Dimensions® CM

6 Click the Help menu. The Help menu has the following options:

• Using Help: explains how to use the panel and field level help.

• About: displays information about the current version of the ISPF
client.

7 Press <END> to close the Help menu.

Exercise 3 Create a New Project and Directory
In this exercise, use the Command Entry panel to enter Dimensions
commands to:

 Create a new project.

 And add a directory to the new project.

To create a new project and directory:

1 From the Commands menu, select Command Entry. The Command
Entry panel is displayed.

2 In the Dimensions command field enter the command to create a
new project called DEVELOPMENT:

DWS "PAYROLL:DEVELOPMENT" /DESCRIPTION="Project for
tutorial"

3 Press Enter. The message 'Executing' is displayed in the top right
corner. After the command has finished executing the Dimensions
Command Log panel is displayed.

4 To close the Dimensions Command Log panel and return to the
Command Entry panel, press <END>.

NOTE Enter commands exactly as they are displayed below. See also
the Command-Line Reference.

Dimensions for z/OS Guide 87

5 In the Dimensions command field, enter the following command to
create a new directory called ASM in the project DEVELOPMENT:

CWSD ASM /WORKSET=PAYROLL:DEVELOPMENT

6 Press Enter. The message 'Executing' is displayed in the top right
corner. After the command has finished executing the Dimensions
Command Log panel is displayed.

7 To close the Dimensions Command Log panel and return to the
Command Entry panel, press <END>.

8 To return to the ISPF client main panel, press <END>.

Exercise 4 Set the Project and Project Root
In this exercise, set the current project to DEVELOPMENT and set the
project root.

To set the project and project root:

1 From the Commands menu, select Set Current Project. The Set
Current Project panel is displayed.

2 In the Project field enter '/' and press Enter. The Project Selection
pop-up panel is displayed. Enter 's' next to DEVELOPMENT and press
Enter. The Project Selection pop-up panel closes.

3 In the Project Root field enter '/' and press Enter. The Set Project
Root pop-up panel is displayed.

4 In the Node Name field enter '/' and press Enter. The Network Node
pop-up panel is displayed. Enter 's' next to the network node that
you want to select, and press Enter. The Network Node pop-up panel
closes.

5 In the Dataset field, enter the full data set name of the project root,
for example, MDHDEV. Press Enter. The Set Project Root pop-up
panel closes.

6 To make DEVELOPMENT the default project, optionally enter '/' in the
Make default Project field.

88 Dimensions® CM

7 Press Enter. The Set Current Project panel closes. The ISPF client
main panel refreshes and updates the name of the current project.
Your ISPF main panel should look similar to this (to refresh the
screen press PF5):

Dimensions for z/OS Guide 89

Exercise 5 Change Directories
In this exercise, change directory to the ASM sub-directory that you
created earlier.

To change directories:

1 In the ISPF client main panel enter 's' next to ASM. The symbol '+' to
the left of ASM denotes that it is a directory.

2 Press Enter. The ISPF client refreshes and displays the contents of
the directory (which is currently empty). The Project Path field
displays the current project path.

Exercise 6 Create a New Item
In this exercise, create a new mainframe item and add it to the
Dimensions database. The item that you add is an ASM source file for the
Disassembler product that ships with Dimensions for z/OS.

To create a new item:

1 From the Item menu select Create. The Create Item panel is
displayed.

2 To keep the source file in the work area, in the Keep copy in user
area field enter '/'.

3 In the Dataset name field enter the name of the data set containing
the item that you are going to add to Dimensions:

NOTE You can only use the ISPF client Create Item panel to create
mainframe items.

90 Dimensions® CM

'MDH.V1010.SUPP.DISASS.ASM(MDOARBLD)'

4 To automatically populate the fields in the panel with default values,
press F5.

5 In the Comments field enter ASM source.

Before you create the item your Create Item panel should look like
this:

6 Press Enter. After the item is created the following message is
displayed in the top right corner of the ISPF client main panel:

Item Create Successful

Dimensions for z/OS Guide 91

7 Press <END> and press PF5 to refresh the display. The ISPF client
displays the new item.

Exercise 7 Browse the Item
In this exercise, browse the item that you created in the previous
exercise.

To browse the item:

1 In the ISPF client main panel enter '/' next to MDOARBLD and press
Enter. The Dimensions Item Actions pop-up is displayed.

92 Dimensions® CM

2 In the Dimensions Item Actions pop-up enter '4' or 'b' and press
Enter.

The item is retrieved and displayed in ISPF Browse.

3 To exit ISPF Browse press <END>.

Exercise 8 Check Out the Item
In this exercise, check out the item from the Dimensions database.

To check out the item:

1 In the ISPF client main panel enter '/' next to MDOARBLD and press
Enter. The Dimensions Item Actions pop-up is displayed.

2 In the Dimensions Item Actions pop-up panel enter '1' or 'o' and
press Enter. The Check Out panel is displayed. The Dataset Name
field specifies the data set where the item will be checked out to. If
this data set does not exist, it will be created automatically. The
default for the Dataset Name field is:

<project root>.<project path>(<item name>)

Change the data set name if required.

3 In the New Branch/Revision field check that the revision number
is '2', or enter '2' if this field is empty.

NOTE The Dimensions Item Actions pop-up displays a list of the
main version management tasks and enables you to quickly choose
an action for the selected item.

Dimensions for z/OS Guide 93

4 To optionally relate a request to the item, in the Request(s) field
enter '/' and press Enter. In the Request Selection pop-up enter 's'
next to each request that you want to relate to this item.

Press Enter to close the Request Selection pop-up.

5 Press Enter. The item is retrieved to the data set that you specified
and the following message is displayed in the top right corner of the
ISPF client main panel:

Item Fetch Successful

6 Press PF5 to refresh the display. An 'x' is displayed to the left of
MDOARBLD to indicate that it is checked out. The Revision column
displays the latest version number of the item.

94 Dimensions® CM

Exercise 9 Undo the Check Out
In this exercise, undo the check out of the item you just checked in.

To undo the check out:

1 In the ISPF client main panel enter '/' next to MDOARBLD and press
Enter. In the Item Actions pop-up panel enter '3' or 'x' and press
Enter. The Undo Check Out panel is displayed.

2 Press Enter. The item retrieval is canceled, the item is unlocked, and
the revision number that was created during the check out is
released.

3 Press PF5 to refresh the display. The 'x' indicating that MDOARBLD is
checked out is cleared.

Exercise 10 Action the Item
In this exercise, action the item you created earlier.

To action the item:

1 In the ISPF client main panel enter '/' next to MDOARBLD and press
Enter. In the Item Actions pop-up panel enter '9' or 'a' and press
Enter. The Action Item panel is displayed.

2 To specify the status to which the item is actioned, in the Next
Status field enter '/' and press Enter.

Dimensions for z/OS Guide 95

3 In the Item Status pop-up panel enter 's' next to UNIT TESTED and
press Enter.

The Item Status pop-up panel closes.

4 Press Enter. After the action is successfully executed the status of
MDOARBLD changes to UNIT TESTED.

Exercise 11 Display Help Panels
The ISPF client has two types of help panels:

 Panel level help panel: describes the general functionality of the ISPF
panel that is currently open.

 Field level help pop-up: describes the functionality of a specific field.

To display help panels for the Create Item panel:

1 From the Item menu, select Create Item. The Create Item panel is
displayed.

2 To display panel level help, place the cursor anywhere that is not a
field, for example on an empty area of the panel, and press F1. The
Create Item help panel is displayed. Press <END> to close the help
panel.

3 To display a field level help pop-up, place the cursor on a field, for
example the Project field, and press F1. The Project Field help pop-
up is displayed. Press <END> to close the help panel.

4 Press <END> to exit the Create Item panel.

96 Dimensions® CM

Exercise 12 Log Off from Dimensions
In this exercise, log off from Dimensions and exit the ISPF client.

To log off from Dimensions:

1 From the File menu, select Logoff/Exit.

2 In the Exit Confirmation panel enter 'y', and press Enter. Your ISPF
session ends and the ISPF Primary Option Menu is displayed.

Summary
This quick start tutorial explained how to:

 Log in to Dimensions

 Create a new project and directory

 Set the project and project root

 Change directories

 Create a new item

 Browse an item

 Check out an item

 Undo a check out

 Action an item

 Display help panels

 Log off from Dimensions

Dimensions for z/OS Guide 97

Chapter 4
Operating a Dimensions Instance

Starting a Dimensions Instance 98
Stopping a Dimensions Instance 98
Viewing OMVS Processes from SDSF 98
Altering Message Handling in your Dimensions Listener 98

98 Dimensions® CM

Starting a Dimensions Instance
If your local metadata server is defined per instance, you need to start it
first using the following command:

S <instance local meta data server proc>

To start a Dimensions instance, run the following command at a console:

S <instance proc>

Stopping a Dimensions Instance
To stop a Dimensions instance issue the following command at a console:

p <instance>

If your local metadata server is defined per instance you may also want
to stop it.

Viewing OMVS Processes from SDSF
To view USS processes from SDSF use the ps command. By noting the
ASID/ASIDX you can cross reference this to the DA display of active
address spaces. To cancel a process that is not functioning properly type
c next to its row.

Altering Message Handling in your Dimensions
Listener

In the MDHTDCFG member there are settings that allow the installation
to vary the ROUTCDE used for messages by severity. These settings
apply to all the subtasks started by the listener as well as the parent
task. If your installation suppresses ROUTCDE 11 messages to SYSLOG

Dimensions for z/OS Guide 99

you can override the default ROUTECDE so that you can see these
messages.

Started Tasks
User listener tasks run under the user ID of the starting user. These
listener tasks are started when an AUTH is performed to the tertiary
node, and are stopped when the client disconnects or the connection
times out. To shut down all portions of the listener you may need to
disconnect all clients.

100 Dimensions® CM

Dimensions for z/OS Guide 101

Chapter 5
Using the ISPF Client

Logging In to the ISPF Client 102
About the ISPF Client Main Panel 103
Invoking Help 107
Setting the Project Root and the Current Project 108
Performing Actions on Items 108
Performing Actions on Groups of Items 114
Creating Items 115
Browsing and Printing Requests 115
Building 115
Entering Dimensions Commands 120
Processing Commands in Batch Mode 122
Logging In to a Remote Node 123
Changing Passwords 124
Browsing the Command Log File 124
Entering TSO Commands 124
Logging Off from the ISPF Client 124

NOTE This chapter describes the general functionality of the main
panels in the ISPF client. To read a full description of each panel and the
privileges required to perform actions, see the ISPF panel online help.
For details about invoking help, see page 107.

102 Dimensions® CM

Logging In to the ISPF Client
For details about logging in to the ISPF client see the first exercise in the
ISPF Client Quick Start Tutorial on page 80.

Profiles
Before logging in you can use the Load Profile panel to select or delete an
existing connection profile. The functionality of the panel is similar to the
Profile field in the desktop client log in window. You can also use the
Login panel to create a new profile.

A log in profile enables you to save a set of log in parameters for a
specific machine and user ID. Profiles save you time as you do not have
to re-enter the log in information each time you log in to the same
machine. You can create multiple profiles and delete profiles that are
redundant.

For details about creating, selecting, and deleting profiles, see the help
topics for the Login panel and the Login Profile panel.

Password Retention
Passwords, including remote log in passwords, are only retained for a
calendar day. For example, if you successfully log in to the ISPF client,
log off, and then want to log in again in the same calendar day, press the
Enter key when you are in the log in panel to automatically log in. The
password fields will appear to be empty but the information is retained.
After the calendar day changes you have to re-enter your passwords and
perform node authentications again.

NOTE Your login data is used for temporary data sets and required by
activities such as Browse or Compare. However, if you are retrieving a
file from another node, or working with a user file on a different node,
you will be prompted for your username and password (where required).
For information about password retention see below.

NOTE You can access the Load Profile panel only from the Login panel.

Dimensions for z/OS Guide 103

About the ISPF Client Main Panel
The ISPF client main panel is where you perform activities such as:

 Navigate through projects and directories.

 Perform actions on items and groups of items.

 Execute Dimensions commands.

 Execute TSO commands.

 Configure settings.

 Invoke help.

 Build items, projects and baselines.

 Log off from Dimensions.

About the Main Panel Display
The ISPF client main panel displays the following information:

 The current connection status (the same information that is
displayed in the desktop client status bar).

 The current Dimensions project.

 The current project root.

 The current project path.

 A list of the sub-directories and files in the directory where you are
currently located. Directories and sub-directories and are identified
by a plus sign '+' to the left of the directory name. For each file the
following information is displayed:

• The revision number of the item.

• The current status of the item.

• The date the file was last modified.

• The user ID of the last person to modify or check out the file.

• The deployment stage ID of the item.

• The item specification (the compound field that identifies the item
in a Dimensions database).

104 Dimensions® CM

The illustration below shows a typical ISPF client main panel:

Configuring the Main Panel Display
Use the Settings panel to configure the main panel display including:

 The columns that are displayed in the main panel, their width, and
the order in which they appear.

 The automatic refresh of the main panel after any of the following
commands have been processed:

• Check in

• Check out

• Edit

• Update

A Menu bar

B TSO command line prompt

C Current connection status

D Current project details

E List of sub-directories and files in the current directory

Dimensions for z/OS Guide 105

• Action

• Deploy

If you enter multiple commands the refresh is performed after all the
commands have been processed. Refresh is not performed if you
execute commands from the Command Entry panel.

 The display of all revisions for all items.

 The number of pages that are buffered.

To open the panel from the Settings menu choose Current View.

Expanding Directories
To expand a directory, type 's' in the column to the left of the directory
name or place the cursor in the column and press Enter. The contents of
the main panel are replaced with the contents of the directory that you
selected. To go back up a level press <END>.

To view all the information in a panel do the following:

 To scroll down press F8.

 To scroll up press F7.

 To scroll right press F11.

 To scroll left press F10.

 To close a panel press <END>.

NOTE To manually refresh the main panel press PF5 at any time.

106 Dimensions® CM

Displaying all Item Revisions
To display all revisions for all items in a directory, not just the current
revision, type expand at the command prompt and press Enter. To only
display the current item revisions, type expand off at the command
prompt and press Enter. You can expand all item revisions by default in
the Settings panel.

Viewing Item History
To view all the revisions of a single item type 'H' (History) next to the
item and press Enter. The main panel is refreshed and only displays the
revision history of that item. To view all the items in the directory press
<END>.

Setting Preferences
Use the Preferences panel to:

 Save your log in information in your profiles. A log in profile enables
you to save a set of log in parameters for a specific machine and user
ID. Profiles save you time as you do not have to re-enter the log in
information each time you log in to the same machine.
Default: N (off)

 Create a log file for each session. Default: N (off)

 Refresh the log file for each session. To erase the log and start a new
one for each session enter '/' in the 'Refresh Log' sub-option. If you
leave this field blank the log data is appended to the current log. If
you are not creating a log file for each session this option has no
effect. Default: N (off)

 Turn off the 'Delete Confirmation' panel when you delete items. You
will not be asked for confirmation, which can lead to accidental loss
of data.

 Use the current user's TSO PREFIX as the high level qualifier for all
data set allocations.

Dimensions for z/OS Guide 107

 Use the local project root for the current session instead of the server
project root.

 Use the current project root and the current directory when
formatting data set names.

To open the panel from the Settings menu choose Preferences.

Displaying the ISPF Client Version Number
To display the version number of your ISPF client, from the Help menu
choose About.

Invoking Help
The ISPF client has two types of help panels:

 Panel level help panel: describes the general functionality of the ISPF
panel that is currently open. To display panel level help place the
cursor anywhere that is not a field, for example on an empty area of
the panel, and press F1. To close the help panel press <END>.

 Field level help pop-up: describes the functionality of a specific field.
To display a pop-up help topic, move the cursor to the field and press
F1. To close a pop-up press <END>.

A To display panel level help place the cursor anywhere that is not a field
and press F1.

B To display field-level help move the cursor to a field and press F1.

108 Dimensions® CM

Keyboard Shortcuts in Help Topics
Use the following keyboard shortcuts to move through help topics:

Setting the Project Root and the Current
Project

Use the Set Project Root panel to set the root of the current project. To
open the panel from the Commands menu choose Set Project Root.

Use the Set Current Project panel to change to a different product and
project. You can also use the panel to set the project root and make the
project the default. To open the panel, from the Commands menu choose
Set Current Project.

Performing Actions on Items
To perform an action on an item move the cursor to the column to the
left of the item and do one of the following:

 Type one of these letters and press Enter:

Action Shortcut

Scroll down a topic (if More: + is displayed in the top
right corner).

F11

Scroll up a topic. F10

Close a topic <END>

Action Letter See page

Check out an item O 110

Check in an item I 111

Undo check out X 111

Browse an item B 111

Dimensions for z/OS Guide 109

For example:

The actions listed above are the default actions assigned in the ISPF
panels. For details about building your own extensions see page 137
or check with your Dimensions for z/OS system administrator.

 Type a forward slash ('/') and press Enter. The Dimensions Item
Actions pop-up panel opens and displays a list of all the actions that
are available for that item. Type the action's number or letter and
press Enter. For example:

Get an item (Fetch) G 111

Compare items C 112

Edit an item E 112

Update an item U 113

Action an item A 113

Delete an item D 113

History H 106

Deploy P 113

Build an item M 115

Impacted targets T 120

Action Letter See page

NOTE The Build and Impacted actions are only available if the
current project has a build configuration associated with it.

110 Dimensions® CM

Checking Out Items
Use the Check Out panel to check an item out of Dimensions to a target
data set that you specify. In the panel you can also:

 Associate the item with a request.

 Automatically overwrite the item in the target data set.

 Enter additional qualifiers in the Options field. The qualifiers are
appended to the command line constructed from the other entries on
this panel.

In the ISPF client main panel an 'x' is displayed to the
left of items that are checked out.

1. To open the Dimensions Item Actions
pop-up panel for an item, type a
forward slash and press Enter.

2. To perform an action, type the action's letter or
number and press Enter.

Dimensions for z/OS Guide 111

Checking In Items
Use the Check In panel to check an item in to Dimensions from a source
data set that you specify. In the panel you can also:

 Specify if you want to keep a copy of the item in your user area.

 Perform an automatic Get on the item after check in.

 Enter additional qualifiers in the Options field. The qualifiers are
appended to the command line constructed from the other entries on
this panel.

Undoing a Check Out
Use the Undo Check Out panel to cancel the check out of an item. The
item is unlocked, and the revision number that was created during check
out is released. You can also enter additional qualifiers in the Options
field. The qualifiers are appended to the command line constructed from
the other entries on this panel.

Browsing Items
Use the Browse option to view the contents of an item. A get (fetch)
operation is performed on the item, which is sent to the scratch data set,
and the ISPF Editor is invoked in Browse mode. No validation is
performed to check that the item is browse enabled and that its
properties (record, length, organization etc.) match those of the scratch
data set.

Getting (Fetching) Items
Use the Get Item panel to fetch an item and copy it to a data set that you
specify. In the panel you can also:

 Specify if you want to expand substitution variables.

NOTE The Item Specification field and the Source/Target Data Set
Name path are populated by default on most panels. The path is based
on the project root, current project directory, and the filename of the
selected item.

112 Dimensions® CM

 Automatically overwrite the item in the target data set.

 Enter additional qualifiers in the Options field. The qualifiers are
appended to the command line constructed from the other entries on
this panel.

Comparing Items
Use the Compare Items panel to compare two versions of an item.

 The Base Item Specification field is the base object for the
comparison.

 The Revision Item Specification field is a previous version of the item
that you want to compare to the base object. The item can exist in a
data set on the system, or in Dimensions.

The items are retrieved to a temporary data set and a browse tool
invoked by default on the results. The browse tool is invoked via a CLIST
that you can customize to allow you to choose your preferred utility (the
default is SuperC). Consult your system administrator for information
about changing the default compare utility.

Editing Items
Use the Edit Item panel to edit an item. When you select an item for
editing you can optionally specify a revision number and select requests
to which it will be related. The item is then retrieved to a temporary data
set and displayed in the ISPF edit utility.

Operationally, Edit Item is the equivalent of Check Out Item, followed by
local editing of a temporary file, and Check In Item.

Items are not revised in the Dimensions database when:

 You did not save the changes in ISPF edit (the Edit Item panel is not
displayed and the item is not revised).

NOTE The ISPF client does not support complex merges such as
merging projects (use the desktop client or the web client). However,
you can use an external merge tool and hook it into the ISPF interface
(consult your system administrator).

Dimensions for z/OS Guide 113

 You terminate the Edit Item panel by pressing END or CANCEL (the
item is not returned to the Dimensions database).

Updating Items
Use the Update Item panel to create a new revision of an item and check
it in without checking out and editing the existing item. For example, you
can add an item not previously in Dimensions as a new revision of an
existing item. The Source Dataset fields specify the source of the new
revision. You can also associate the item with a request.

Actioning Items
Use the Action Item panel to action an item to a different lifecycle state.
In the panel you can also:

 Specify if you want to build the item after it is actioned.

 Enter additional qualifiers in the Options field. The qualifiers are
appended to the command line constructed from the other entries on
this panel.

Deleting an Item
Use the Delete Item panel to delete an item revision and remove it from
the Dimensions repository. You cannot delete a revision that is being
used by other objects. For example, you cannot delete a revision that has
been included in a release or archive baseline.

Deploying an Item
Use the Deploy Item panel to move an item to another stage in the
Global Stage Lifecycle (GLS). Optionally, you can also choose to start a
build after the deployment has completed. The Global Stage Lifecycle is
the lifecycle that items follow that controls which versions of the items
are included in the configurations and builds of a project. Item revisions
are moved to the next stage in this lifecycle when they have reached the
appropriate stage of approval (a process called 'deployment'). If any
deployment areas are associated with the stage the item files are copied
to those areas when the items are deployed to the stage.

114 Dimensions® CM

Performing Actions on Groups of Items
You can perform the following actions on a group of items that you have
selected:

 Check in

 Check out

 Undo check out

 Get

 Action

 Delete

 Update

 Deploy

To perform an action on a group of items:

1 Enter 's' next to each item that you want to select. Press Enter. An 's'
is displayed to the left of item that is selected.

2 From the Item menu select a group action and press Enter. The
group panel is displayed for the action that you selected. The
Selected Items field lists the items that you selected.

3 Populate the fields in the panel as required and press Enter to
execute the action.

4 To unselect the items in the ISPF client main panel, enter 's' next to
each item and press Enter.

Dimensions for z/OS Guide 115

Creating Items
Use the Create Item panel to add a new item to a Dimensions repository.
You must have a role that enables you to action an item from its initial
lifecycle state to a new state. If the Product Manager has assigned the
$ORIGINATOR role to the first transition in the lifecycle for this item type,
any Dimensions user that has a role on the design part that owns the
new item can create an item.

To open the panel, from the Item menu choose Create.

Browsing and Printing Requests
Use the Browse/Print Requests panel to select, or enter, the ID of a
request, retrieve it to a temporary data set, invoke the ISPF Editor in
read-only mode, and print the request. You can also enter additional
qualifiers in the Options field.

To open the panel from the Commands menu choose Browse Request.

Building
The ISPF client enables you to build items, projects, requests, and
baselines. Builds are managed by Dimensions Build, a build
management, execution, and monitoring tool that is part of Dimensions
CM.

You can optionally capture build outputs and check them automatically
into Dimensions. This functionality is referred to as a closed-loop build.

NOTE

 We recommend using a plain text format for requests on
mainframes.

 Request attachments are not retrieved to mainframes. If you require
attachments, use the desktop client or the web client.

116 Dimensions® CM

When you capture build outputs you can optionally select the requests
that the outputs will be related to.

For information about using the build panels see the panel help.

For information about configuring and using Dimensions Build see the
Dimensions Build online help. This document also contains an MVS build
tutorial.

For information about running builds from the command-line client see
the Command-Line Reference.

Configuration Pop-up

For the Build Item, Build Project, and, Build Request panels the
Configuration pop-up shows the latest checked in versions of the build
configurations in the following format:

<build configuration name>;<version>

For example, if you have two versions of the build configuration
build_test that are checked in, build_test;1 and build_test;2,
the list displays:

build_test;2

Dimensions for z/OS Guide 117

Building Items
You can only build an item if the Dimensions project to which it belongs
has one or more build configurations. To open the Build Item panel enter
'm' next to the item and press Enter.

The Configuration pop-up in the Build Item panel only displays build
configurations:

 That are associated with the current Dimensions project.

 Where the items that you selected have affected targets.

In the example above Build_configuration_1 contains Item_1 that
affects Target_1 and is displayed in the Build Configuration list.
However, Build_configuration_2 is not displayed as the item it
contains does not affect any targets.

Building Projects
You can only build a Dimensions project if it is has one or more build
configurations. To open the Build Projects panel, from the Build menu
choose Current Project.

Building Requests
You can only build a request if the Dimensions project to which it belongs
has one or more build configurations. This feature is useful when you
want to build all the items related to a specific request.

118 Dimensions® CM

The Build Request panel enables you to include requests that have a child
relationship to the request you are building.

In the example above, if you select the Include item(s) from related child
requests check box all the items will be built. If you do not select the
check box only Item_1 will be built.

The Configuration pop-up only displays build configurations:

 That are associated with the current Dimensions project.

 Where the items in the requests have affected targets.

In the example above the Configuration pop-up displays
Build_configuration_1 because Item_1 in Request_1 has an
affected target. Build_configuration_2 is not displayed because
Item_2 in Request_2 does not have an affected target.

Building Baselines
You can only build a baseline if it was created against a Dimensions
project that has one or more build configurations.

Build configuration versions with the prefix '*' were checked in when the
baseline was created against the Dimensions project. These are the
latest versions of the build configurations at the time the baseline was

Dimensions for z/OS Guide 119

created. Build configuration versions without the prefix '*' were created
after the baseline was captured for the project.

In the example above the Configuration pop-up displays the following
configurations:

 *Build_configuration1;1

 Build_configuration1;2

 *Build_configuration2;4

 Build_configuration3;1

In the Build Work Area pop-up work areas above the divider are areas set
up for the build configuration that you have selected and you have access
to. Work areas below the divider are all other areas to which you have
access.

120 Dimensions® CM

In the example above the Build Work Area list displays the following work
areas:

WA_1
WA_2

WA_3
WA_4

Impacted Targets
The Impacted Targets option displays the build target(s) affected by an
item that you select. This is useful when you want to check what targets
will be built before you launch a build. To display a list of impacted
targets enter 't' next to the item and press Enter.

Entering Dimensions Commands
Use the Command Entry panel to enter Dimensions commands. No
validation is performed by the ISPF interface and all command output is
written to the scratch data set and log file. After a command has been
executed, ISPF Browse is invoked on the scratch data set member,
allowing you to browse the command output.

To open the Command Entry panel, from the Commands menu choose
Command Entry. To enter a command, place the cursor in the
Dimensions command field and enter the command syntax exactly as
described in the Command-Line Reference. Dimensions executes the
command immediately after you press the Enter key. Any information
output by the command is written to a temporary data set and written to

NOTE You can only build a baseline in a work area.

Dimensions for z/OS Guide 121

the command log file that you optionally specified in the Settings panel
(see page 106).

Repeating Recently Used Commands
The area at the bottom of the Command Entry panel lists the ten most
recently used commands. To repeat a command, place the cursor on the
command and press Enter. The command is copied to the Dimensions
command field. Edit the command (if required) and press Enter to
execute it.

Using the History List
The Command Entry panel allows you to control the commands that are
displayed in the recently used commands list. From the List menu in the
Command Entry panel choose one of the following options:

 Update On: saves commands in history and displays them in the
recently used commands list.

 Update Off: does not save commands in history.

NOTE Do not enter a SCWS command as this will invalidate the view
being displayed in the ISPF interface. Use the Set Current Project panel
to change the current project. If you do enter a SCWS command, press
F5 (refresh) when you return to the ISPF main panel. For more details
about changing projects, see page 108.

For a list of commands that are not currently supported by the ISPF
client see page 206 or open the help topic for the Command Entry panel.

NOTE An asterisk (*) to the left of the menu item indicates which
option is currently active.

122 Dimensions® CM

For example, assume the following scenario:

1 Update is switched on.

2 The following commands are entered:

• EI

• RI

3 Update is switched off.

4 The following commands are entered:

• CRB

• DI

5 Update is switched back on.

6 The following command is entered:

• DIFF

The recently used commands list will look like this:

=> EI

=> RI

=> DIFF

Processing Commands in Batch Mode
Use the Batch Command Input panel to specify a data set containing
Dimensions commands and process them in batch mode. You can also
specify an alternative log file data set where you want Dimensions to
write the results of each command that it executes. If you leave this field
blank the results are written to the temporary log file.

After you press Enter the ISPF client executes each command in order,
writes the results to a temporary data set, and displays the data set in
ISPF Browse. The results conclude with a summary of the commands
executed.

To open the panel from the Commands menu choose Batch Commands.

Dimensions for z/OS Guide 123

An alternative method of running Dimensions commands in batch mode
is to use the batch interface, for details see page 125.

Logging In to a Remote Node
Use the Remote Login panel to log in to a Dimensions remote node. To
open the panel from the File menu choose Node Login.

An alternative method of logging in to a remote node is to submit an
AUTH command at the command line. The AUTH command enables you
to perform tertiary node access to items located on a remote node. All
communication across the network of this sensitive information is
encrypted. But we strongly recommend that you use the Remote Login
panel for the following reasons:

 You do not need to check that parameters are spelled correctly.

 You are automatically prompted to change your password when
required.

 Password information is protected (it is not displayed).

 You can log in to multiple nodes by changing field values in the
Remote Login panel.

 If your log in parameters are saved (see "Password Retention" on
page 102), Dimensions saves all remote node authentications
performed through the Remote Login panel, and re-executes them
next time you log in. However, if you use AUTH commands, you have
to resubmit the information every time you log in. The AUTH
command is described in the Command-Line Reference.

NOTE If you attempt to get, or check out, an item from a remote node
before logging in to the node, Dimensions automatically displays the
Remote Login panel and populates the Node Information field with the
host name.

124 Dimensions® CM

Changing Passwords
Use the Change Password panel to change the password for a user ID on
a mainframe node. To open the panel from the File menu choose Change
Password.

This facility is not available for non-mainframe nodes or from the
Dimensions log in panel.

Browsing the Command Log File
Use the Browse option to display the current log file in ISPF Browse. To
open the log file from the File menu choose Browse Log.

Entering TSO Commands
Most ISPF client panels have a Command prompt in the top left corner
where you can enter TSO commands.

Logging Off from the ISPF Client
To log off from the ISPF client from the File menu choose Log Off/Exit.

Dimensions for z/OS Guide 125

Chapter 6
Using the Batch Interface

Overview 126
DD Names 127
Return Codes 129
Securing Passwords 129
Example JCL Jobstream 129
Using the Batch Interface Interactively 132

126 Dimensions® CM

Overview
MDFLCMD is the Dimensions for z/OS batch interface. The following
diagram illustrates how MDFLCMD integrates into the general
environment:

Use the following methods to process Dimensions commands in batches:

 Specify the commands in a JCL jobstream, REXX exec, or TSO
session.

 Create a data set to contain the commands.

 Use a combination of in-stream commands and data sets.

The mainframe node information is not required when you use MDFLCMD.
However, if the batch job refers to any tertiary nodes, including the
mainframe that you are logged in to, you must include an AUTH
command in the batch script. This AUTH command can be held
separately from the rest of the commands to protect the LOGIN details,
see page 132 for details.

An alternative method of running Dimensions commands in batch mode
is to use the ISPF Batch Command Input panel. See page 122 for details.

Dimensions for z/OS Guide 127

DD Names

LOGIN
The LOGIN member is optional. Sequence numbers are ignored, and only
information in columns 1 through 72 is used. LOGIN contains information
structured as follows:

/switch value value value

You can spread this structure over as many lines as required. Values are
concatenated and spaces are ignored.

The following switches are available:

COMMAND and SYSIN
You must use either COMMAND or SYSIN. Do not use sequence numbers
in these records.

You can expand commands over multiple lines by placing a hyphen '-' on
the end of a line, up to a maximum of 1000 bytes.

If the DDNAME COMMAND is present, commands are expected to come
from this data set. Otherwise, DDNAME SYSIN is used for commands.

Switch Description

/CERTIFICATE Specifies a one-time digital certificate.

/DBNAME Specifies a database name.

/DBPASS Specifies a database password.

/DSN Specifies a database connection string.

/HOST Specifies a host name.

/PASS Specifies the password for the user ID.

/USER Specifies the user ID for an account on the
Dimensions database server.

128 Dimensions® CM

The first six records of this stream must contain log in information if the
LOGIN DDNAME has not been used for logging in. You must specify the
log in information exactly as follows (the order is important and
information that you omit must be on blank lines):

 Dimensions user ID

 Dimensions password for the user ID

 Dimensions base database name

 Dimensions base database password (usually blank)

 Dimensions database data source

 DNS name of the Dimensions Server machine and, optionally, a
semi-colon followed by a port number. For example: dmserver:8088

See the examples below for more details.

SYSPRINT
This stream holds the commands entered and their results. At the end of
the stream, a summary of executed commands is sent to SYSPRINT, for
example:

Command Execution Summary
7 commands processed
5 completed successfully
1 completed with error(s)
1 user authentication failure(s)

SYSOUT
Some messages, particularly from the LE runtime library, may be
produced on SYSOUT.

Dimensions for z/OS Guide 129

Return Codes
When a batch job ends it reports the following information:

Securing Passwords
To maintain the integrity of log in information, we recommend that you
keep your log in IDs and passwords in data sets protected by your site's
mainframe security system. These data sets can then be concatenated
with the commands data sets via the SYSIN DD or allocated to the LOGIN
DD name.

Example JCL Jobstream
The following example is a JCL jobstream that invokes Dimensions and
runs commands:

Code Description

0 Successful completion.

4 Successful connection but command errors were
encountered.

12 Successful connection but one or more
authorizations to remote nodes failed; command
errors may have occurred as well.

16 Connection failure.

130 Dimensions® CM

//STEP00 EXEC PGM=MDFLCMD,
// PARM='POSIX(ON),ENVAR("_CEE_ENVFILE=DD:DIMVARS"),POSIX(ON)/'
//STEPLIB DD DSN=D390.V201A.LOADLIB,DISP=SHR
//DIMVARS DD DSN=MDH.DIM671.PARM(MDHTDIMV),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSIN DD DSN=TVMT.PROTECT.DATA(USERDATA),
// DISP=OLD
// DD DSN=TVMT.PROTECT.DATA(AUTHDATA),
// DISP=OLD
// DD DSN=TVMT.USER.DATA(CMDLIST),
// DISP=OLD

The connection details (USERDATA) for this example are as follows:

dmsys
dmsys
intermediate

production
dim_server1

where:

Line Description

dmsys Specifies a user ID registered on the Dimensions
base database.

dmsys Specifies the password for the user ID.

intermediate Specifies a Dimensions database name.

Leave blank (database password not required for
Dimensions 8.x servers and later).

production Specifies the database connection string.

dim_server1 Specifies the DNS name of the Dimensions
Server machine and, optionally, a semi-colon
followed by a port number. For example:
dmserver:8088

Dimensions for z/OS Guide 131

The AUTH data set command (AUTHDATA) is as follows:

AUTH /network_node=unix_node /user=dmsys /password=dmsys

The following example uses the COMMAND and LOGIN DDs:

//MTROTHX JOB 'MTROTHX',NOTIFY=&SYSUID,CLASS=A,MSGCLASS=H
//STEP00 EXEC PGM=MDFLCMD,
// PARM='POSIX(ON),ENVAR("_CEE_ENVFILE=DD:DIMVARS")/'
//*STEPLIB DD DSN=MTROTH.V912.LOAD,
//* DISP=SHR
//STEPLIB DD DSN=MDH.V910.MDHLLIB,
// DISP=SHR
// DD DSN=MDH.V910.MDHLLPA,
// DISP=SHR
//DIMVARS DD DSN=MDH.DIM671.PARM(MDHTDIMV),
// DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//LOGIN DD DSN=MTROTH.WORK.PCMS(LOGIN),
// DISP=SHR
//COMMAND DD DSN=MTROTH.WORK.PCMS(CMDLIST),
// DISP=SHR
//*

LOGIN contains a tokenized list of login attributes, for example:

/user dmsys
/pass dmsys
/dbname intermediate
/dsn dim9
/host 192.168.1.142

COMMAND DD contains the Dimensions commands to execute, for
example:

SCWS
LWSD /ITEMS /RECURSIVE

132 Dimensions® CM

Using the Batch Interface Interactively
To use the batch interface in the context of a TSO session, issue TSO
commands to:

1 Allocate COMMAND or SYSIN to pass commands. This may be your
TSO terminal or an existing member or members.

/* terminates a terminal input.

2 Allocate LOGIN to your security credentials data set.

3 Allocate all the other data sets as shown "Example JCL Jobstream" on
page 129.

4 Execute the batch interface using the TSO CALL command:

CALL *(MDFLCMD)

5 Pass Dimensions commands into COMMAND or SYSIN.

Dimensions for z/OS Guide 133

Chapter 7
Using the Command-Line Client
on USS

Using the Command-Line Client 134
Invoking Help 135

134 Dimensions® CM

Using the Command-Line Client
The Dimensions command-line client, dmcli, is available on USS and is
equivalent in functionally to that available on other platforms. On z/OS
systems there is no interactive login box, and you must enter your login
parameters at the command-line prompt. Consequently, the -con
<connection> option does not work.

For information about issuing Dimensions commands in a TSO session,
see page 124.

To use the Dimensions command line client on USS:

1 At your USS prompt, enter:

dmcli
-user <user-id>
-pass <user-password>
-host <server-name>
-dbname <database name>
-dsn <dsn-name>

where:

2 Enter commands at the Dimensions client command prompt. For full
details about using the command-line client and the commands see
the Command-Line Reference.

Parameter Description

-user <user-id> A user ID that is registered on
the Dimensions base database
that you want to log in to.

-pass <user-password> The password for the user ID.

-host <server-name> The host name of the
Dimensions server.

-dbname <database name> The name of the database that
you want to connect to on the
Dimensions server.

-dsn <dsn-name> The database connection string.

Dimensions for z/OS Guide 135

Invoking Help
When working at the Dimensions command line you can invoke text
based help for any Dimensions command. When you invoke help, the
following information is returned:

 The full name of the command.

 The complete syntax of the command.

To invoke help for a command:

At the Dimensions command line, type:

help <Dimensions function mnemonic>

For example:

Dimensions>help abl
ABL - Action Baseline or Items
 <baseline-spec>
 [/ITEM_FILTER=<item-spec>]
 [/STATUS=<status>]
Operation completed

136 Dimensions® CM

Dimensions for z/OS Guide 137

Chapter 8
Customizing and Extending the
ISPF Client

Introduction 138
ISPF Client Extensions 138
API Interface 149
Source Code Library 162

138 Dimensions® CM

Introduction
The purpose of this SDK is to describe some of the user customizable and
extendable features of the Dimensions for z/OS ISPF client.

This SDK assumes that you are familiar with the IBM C development
environment and the aspects of developing ISPF applications. Please
refer to the IBM documentation for more information about these topics.

There are links in this SDK to example source code that ships with the
product.

Before performing any actual coding changes, we recommend that you
refer to the installation directories on the z/OS itself.

ISPF Client Extensions

MDFRLOG
MDFRLOG is a REXX script that is called during initialization and
termination of the ISPF client. The purpose of MDFRLOG is to manage the
log file used by the client. The example below is for a MDFRLOG REXX:

NOTE This SDK is also available as web-based help. For details about
installing the help see "Step A-1 Unpacking and Moving the Distribution"
on page 26.

Dimensions for z/OS Guide 139

/* REXX*/
arg currFunc
if currFunc= 'INIT' then /* Log file initialization */
 do
 /*Determine log file name */
 dsn = "'"userid()".dim390.logfile'"
 /* Save log file name in shared pool */
 LOGFILE = dsn
 ADDRESS ISPEXEC "VPUT (LOGFILE) SHARED"
 /* Allocate file name if it doesn't exist */
 if sysdsn(dsn)'OK' then
 do
 "alloc da("dsn") recfm(v b) lrecl(256) dsorg(ps) ",
 "space(5,10) cylinders"
 end
 end
else /* Log file termination */
 do
 /* The following code could be used to delete the log file */
 /* when execution completes */
 /* ADDRESS ISPEXEC "VGET (LOGFILE) SHARED" */
 /* "delete "LOGFILE */
 end
return

When MDFRLOG is invoked, it is passed a single function parameter that
indicates the current activity that needs to be performed. This parameter
has one of the following values:

 INIT (Initialization): Indicates that the client is in the process of
starting. At a minimum, processing must ensure the log file is
allocated (vb, lrecl=256 is recommended) and that the name of the
log file is stored in the SHARED pool variable LOGFILE. The ISPF
client gets the value of LOGFILE and uses the name contained in it to
perform logging.

 TERM (Termination): Indicates that the client is in the process of
closing. Any clean-up of the log file should be performed. Optional
operations include deleting the log file or versioning it for saving
client activity history.

The operating system searches the SYSEXEC DD for REXX scripts to
execute, therefore each user has the ability to use their own version of
MDFRLOG by adding it to the search path. Apart from the minimum
requirements outlined above, any REXX code/functions can be utilized in
this script file.

140 Dimensions® CM

MDFRCMPR
MDFRCMPR is a REXX script that is called by the ISPF client when you
invoke the client's compare feature. The purpose of MDFRCMPR is to start
a mainframe compare tool using the data sets passed into it. The
example below is a MDFRCMPR REXX:

/* REXX*/
arg DSN1 DSN2
"%SUPERC OLDFILE("DSN1") NEWFILE("DSN2") BROWSE"
return

When you invoke MDFRCMPR it is passed the two data sets to be
compared. The ISPF client will have already retrieved the selected
members into these data sets. The REXX then invokes the compare tool
of choice and, optionally, browses the results. When the execution of
MDFRCMPR is complete and control is returned to the client, any
temporary data sets are deleted.

The default Dimensions for z/OS installation uses a CLIST named
SUPERC that invokes the SUPERC utility for comparison and then starts
ISPF browse on the resulting data set. However, if your site uses a
different compare tool, MDFRCMPR can be modified to perform any
processing necessary to invoke your compare tool.

The operating system searches the SYSEXEC DD for REXX scripts to
execute, therefore each user has the ability to use their own version of
MDFRCMPR by adding it to the search path.

Dimensions for z/OS Guide 141

MDFRTMP
MDFRTMP is a REXX script that is called by the ISPF client when an
operation involving a temporary data set is involved. The purpose of
MDFRTMP is to provide the name of the temporary data set to be used for
the operation. Dimensions allocates the data set with the proper DCB
attributes so you only need to provide the names that are required.

/* REXX */
arg midLevel

/* Determine temp file name */
if LENGTH(midLevel) > 0 then
 dsn = userid()".SRNA."midLevel".T"||,
 RANDOM(1000,9999)||RANDOM(100,999)||".TMP"
else
 dsn = userid()||".SRNA.T"||RANDOM(1000,9999)||RANDOM(100,999)||".TMP"
/* Save log file name in shared pool */
TMPDSN = dsn
ADDRESS ISPEXEC "VPUT (TMPDSN) SHARED"
return

When you invoke MDFRTMP it is passed the mid-level qualifier for the
data set, which is an indication of the type of operation being performed
(BROWSE, EDIT, etc.). By default you can optionally use this mid-level
qualifier in the data set name.

The temporary data set name should be constructed using your sites
standards and returned in the SHARED pool variable TMPDSN.

142 Dimensions® CM

MDFRSFF
MDFRSFF is a REXX script that is called by the ISPF client when an
operation involving a file is involved. The purpose of MDFRSFF is to
provide the name of the file to be used based on the filename as it
resides in Dimensions.

Since you can perform the operation to any Dimensions network node on
any operating system, this routine must be able to formulate the
filename for any operating system.

/* REXX */
/* (C) Serena 2006 */
/* This exit is used by the Serena Dimensions ISPF client */
/* to perform name mangling between the Dimensions */
/* project filename and the MVS filesystem. */

ADDRESS ISPEXEC

/* Get project root file system */
"VGET PRJRNFS SHARED"

/* Get project root operating system */
"VGET PRJRNOS SHARED"

/* Get current name mangling function */
"VGET RXFUNC SHARED"

/* Get project root user area */
"VGET UAREA PROFILE"

/* Get project root navigation path */
"VGET PRJPATH SHARED"

/* Get setting on using full workset directories for MVS */
"VGET WSETDIRS PROFILE"

/* Set name mangling to MVS for local file operations */
if RXFUNC = 1 then
 PRJRNFS = "MVS"

/* Open selected items table */
"TBOPEN DSELLST WRITE"

/* Position pointer to top of table */
"TBTOP DSELLST"

/* Move to first record */
"TBSKIP DSELLST"

do while rc = 0
 if PRJRNFS = "MVS" then /* MVS style file system */
 do
 /* Determine if file extension */
 x = pos(".", TSFILE)

 if x > 0 then /* If file extension, turn in dataset LLQ */
 do
 if x > 8 then
 y = 9
 else

Dimensions for z/OS Guide 143

 y = x

 TEMPFILE = left(TSFILE, (y - 1))
 TEMPTYPE = right(TSFILE, length(TSFILE) - x)

 TSTFILE = TEMPTYPE"("TEMPFILE")"
 end
 else /* No file extension, use current dir as LLQ */
 do
 if WSETDIRS <> 'Y' then
 do
 if length(PRJPATH) > 0 then /* Project dir exists */
 do
 /* Determine if separator present */
 x = lastpos(".", PRJPATH)

 if x > 0 then /* Separator exists */
 TEMPTYPE = right(PRJPATH, length(PRJPATH) - x)
 else /* No directory separator */
 TEMPTYPE = PRJPATH
 end
 else
 TEMPTYPE = ""
 end
 else
 TEMPTYPE = ""

 if length(TEMPTYPE) > 0 then
 TSTFILE = TEMPTYPE"("TSFILE")"
 else
 TSTFILE = TSFILE
 end
 end
 else /* Non-MVS style file system */
 do
 TSTFILE = TSFILE
 end

 /* Save target file name */
 "TBPUT DSELLST"

 /* Move to next record */
 "TBSKIP DSELLST"
end

/* Close selected items table */
"TBCLOSE DSELLST"

return

When you invoke MDFRSFF it is not passed any parameters. However, it
can use variables from the SHARED and PROFILE pools to get information
about what is going on in the ISPF client. Using this information, it can
then formulate the target filename for the given operation.

Since group operations are supported, the routine should loop through
the DSELLST table and process each record. The full contents of this
table are described on page 151. Place the calculated target filename in
the TSTFILE variable and update the table record.

144 Dimensions® CM

When return is received from the REXX, the client combines the project
root directory with the filename(s) from this table to formulate the
source/target location for the file operation being executed.

MDFRVIEW
MDFRVIEW is a REXX script that you can modify to control the ISPF
service that is called when a user selects ‘B’ (Browse) next to an item in
a project list, for example, Browse, View, or a 3rd party tool.

The only input parameter is DSN1, which is the fully qualified data set
name to perform the operation on. Any return code from the REXX
routine is ignored by the ISPF client.

/* REXX */
/* This exit is used by the Serena Dimensions ISPF client */
/* to perform a browse/view of a dataset for various */
/* item operations. */

arg DSN1

ADDRESS ISPEXEC

"VIEW DATASET("DSN1")"

return

Client Executable Components
The Dimensions for z/OS ISPF client is comprised of the following
executable components:

 MDFLISPF: The main client executable that contains mostly ISPF
panel logic.

 MDFLCMD: Dimensions for z/OS batch client that you can use from
JCL to process Dimensions commands.

 MDFDEXT: Client SDK features documented here.

 MDFDUSR: Customer built extension DLL that contains all user
extension functions.

To add functionality to the client see the three areas of logic described
below.

Dimensions for z/OS Guide 145

User Interface

The first thing to decide when you are extending the client is how the
users will invoke your function. If the function you are providing does not
require an item to be selected from the Dimensions database, add it as a
menu item to the main panel. However, if you are providing an item
function, adding an action code may be a better choice.

The following panels may be of interest when you are adding
functionality to the client:

The panels uses the following ISPF fields to communicate user data back
to the client:

 DACTION: a single character field that indicates the action to be
performed on the item. The value in this field typically indicates an
action to be performed on the selected item (Action, Check In, Check
Out, etc.). There should be one field for each line item displayed on
the panel.

 DIMNAV: a multi-character field that indicates a global action to be
performed. The value in this field typically indicates a navigation
function that needs to occur (Log display, Command Entry display,
etc.). This field contains a single value and is acted on immediately
by the client, overriding any values in DACTION.

Converting Action Codes to a DIMNAV String

When the client regains control from the main panel it first checks the
value of DIMNAV. If DIMNAV is blank, it begins checking for action codes

Panel ID Description

MDFPTREE Main ISPF display

MDFPIAS1 Item action selection (without build
options)

MDFPIAS2 Item action selection

IMPORTANT! Do not change the default/reserved action codes on the
MDFPIAS panels. You can rearrange the numbering as long as you
change the IF logic in the PROC section to set the alpha action codes
properly. However, if you change the default/reserved alpha codes, the
client will stop working for the actions selected from this panel.

146 Dimensions® CM

entered next to Dimensions items displayed on the screen. When an
action code is found, it compares the value to the default and reserved
codes.

The default and reserved action codes are:

If the action code entered by the user cannot be found in the list above
the extension function ProcessUSelect() is called to verify the code
against the custom codes that have been added by the customer.
ProcessUSelect() has two parameters:

 A single character action code (char)

 A pointer to the DIMNAV field (char *)

Action Code Description

/ Action pop-up

S Expand a directory, or 'toggle on' the selected
attribute for a file

O Check out an item

I Check in an item

X Undo an item check out

B Browse an item

G Get an item

C Compare an item

E Edit an item

U Update an item

D Delete an item

M Build an item

A Action an item

H History of an item

P Deploy an item

T Impacted targets of an item

NOTE ProcessUSelect() is defined in MDTCNAV and must always be
present in the MDFDUSR DLL.

Dimensions for z/OS Guide 147

The main function of ProcessUSelect() is to verify the incoming action
code and set the return value DIMNAV accordingly. If the action code is
supported by the extension DLL, set DIMNAV to a navigation string that
will be recognized later by the extension DLL. If the action code cannot
be found, leave DIMNAV blank. See the next section for details about
DIMNAV reserved values.

In the MDTCNAV shipped with the client there is a commented out
example of checking for a 'Z' action code and setting the DIMNAV field to
the appropriate string value to invoke the Create Item panel.

Invoking Functions Based on a DIMNAV String

After an action code has been converted to a string value (if necessary),
the ISPF client will begin processing each function. The following are
reserved strings/functions:

DIMNAV String Description

LOGOFF Log off and exit client

BRWITM Browse item

GETITM Get item panel

CHKOUT Check out item panel

CHKIN Check in item panel

UCHKOUT Undo item check out panel

RLOGIN Remote login panel

COMPARE Compare panel

BCHGDOC Browse change doc panel

COMMAND Command entry panel

BATCH Batch command panel

LOG Display log file

CHGWKSET Change project panel

SET01 General settings panel

UPDITM Update item

EDITITM Edit item

DELITM Delete item

148 Dimensions® CM

If the current value of DIMNAV cannot be found in the list above, the user
function ProcessUPanels() is called to process the request.
ProcessUPanels() has two parameters:

• A pointer to the current session info structure (SESSION_INFO *)

• A pointer to the DIMNAV field (char *)

In the MDTCNAV shipped with the client there is a commented out
example of checking for 'USRNEW' in the DIMNAV field and calling the
CreateItem() function. CreateItem() is defined in MDTCNEW. See this
SDK documentation for information about the structures, variables, and
functions used in CreateItem() that is available to any functions that you
write.

BLDITM Build item

ACTITM Action item

ABOUT About the ISPF client

NEWITM New/create item

AFFTGTS Impacted targets of item

DEPITM Deploy item

BLDR Build request

BLDBL Build baseline

CHGPSW Change password

CHGWSRT Change project root

BLDPRJ Build project

SET02 Main panel settings

DIMNAV String Description

NOTE ProcessUPanels() is defined in MDTCNAV and must always be
present in the MDFDUSR DLL.

Dimensions for z/OS Guide 149

API Interface

Main Header File
The main header file for the ISPF client is MDTHDIM. Include this file in
any C sources that access SDK functions and features. The header file
includes:

 Common #defines

 Structures used by the client and API functions

 #defines for ISPF variables used by the client

ISPF Variables
There are a number of ISPF variables that are used by the client. In
general variables that store information during the current client session
are stored in the SHARED pool. Variables which need to be saved from
session to session are stored in the PROFILE pool. For each variable, you
will find a #define for the variable name and a #define for the variable
length.

For example:

#define PROF_CREATE_LOG "MAKELOG "
#define PROF_CREATE_LOG_SIZE 1

In the example above, 'PROF_' indicates that this variable exists in the
PROFILE pool. Defined variables which start with 'SHR_' exist in the
SHARED pool.

The following pool variables are used by the client:

#Define Name Size Pool Format Description

PROF_AUTO_EXPAND PROF_AUTO_EXPAND_SIZE P CHAR Expand all item
revisions on main
panel (Y/N).

PROF_CREATE_LOG PROF_CREATE_LOG_SIZE P CHAR Create log file during
session (Y/N).

150 Dimensions® CM

PROF_LOCAL_ROOT PROF_LOCAL_ROOT_SIZE P CHAR Reset server project
root with local root (Y/
N).

PROF_PERSONAL_PATH PROF_PERSONAL_PATH_SIZE P CHAR Use personal search
path on
DEVELOPMENT builds
(Y/N).

PROF_UAREA PROF_UAREA_SIZE P BINSTR Current user area
entered on Change
Project panel.

PROF_USE_TSO_PREFIX PROF_USE_TSO_PREFIX_SIZE P CHAR Use TSO Prefix (Y/N).

PROF_PROJECT_DIRS PROF_PROJECR_DIRS_SIZE P CHAR Attach project
directory paths on
filenames (Y/N).

SHR_LOGFILE SHR_LOGFILE_SIZE S CHAR Log data set name
(set by MDFRLOG
REXX during startup).

SHR_NODENAME SHR_NODENAME_SIZE S BINSTR Node name entered on
the login panel.

SHR_PROJECT SHR_PROJECT_SIZE S BINSTR Current project name
associated with
project.

SHR_PROJECT_UID 4 S FIXED Project UID.

SHR_ROOTPATH SHR_ROOTPATH_SIZE S BINSTR Root path as
calculated using the
UAREA and the current
directory in the
project.

SHR_PRJ_RNODE_NAME SHR_PRJ_RNODE_NAME_SIZE S BINSTR Node name entered on
project root.

SHR_PRJ_RNODE_OS SHR_PRJ_RNODE_OS_SIZE S BINSTR Project root node OS
type.

SHR_PRJ_RNODE_FS SHR_PRJ_RNODE_FS_SIZE S BINSTR Project root node file
system.

SHR_PROJECT_
DEPLOY_MODEL

SHR_PROJECT_DEPLOY_
MODEL_SIZE

S CHAR Deployment model
currently being used
by the project.

#Define Name Size Pool Format Description

Dimensions for z/OS Guide 151

Information about the currently selected item(s) is stored in an ISPF
table called 'DSELLST'. A user defined panel can utilize 'DSELLST' to
perform processing on the currently selected item in the ISPF client.

The table name is #defined as TBL_SELECTED_ITEMS.

DSELLST Table Variables

The #defines for the 'DSELLST' table variables are as follows:

SHR_SERVER_NAME SHR_SERVER_NAME_SIZE S BINSTR Server name used on
the current
connection.

SHR_WORKSET_UID 4 S FIXED Project UID.

SHR_BUILDABLE SHR_BUILDABLE_SIZE S CHAR Current project is
buildable.

SHR_TEMPDSN_NAME SHR_TEMPDSN_NAME_SIZE S BINSTR Temporary data set
name.

SHR_WSPATH SHR_WSPATH_SIZE S BINSTR Current project root.

#Define Name Size Pool Format Description

#Define Name Size Format Description

TBL_ITEM_STAGE TBL_ITEM_STAGE_SIZE BINSTR Selected item stage

TBL_ITEM_DATE TBL_ITEM_DATE_SIZE BINSTR Selected item date

TBL_ITEM_TGT_FILE TBL_ITEM_TGT_FILE_SIZE BINSTR Selected item target filename

TBL_ITEM_FILE TBL_ITEM_FILE_SIZE BINSTR Selected item file

TBL_ITEM_INITIALS TBL_ITEM_INITIALS_SIZE BINSTR Selected item initials

TBL_ITEM_REVISION TBL_ITEM_REVISION_SIZE BINSTR Selected item revision

TBL_ITEM_SPEC TBL_ITEM_SPEC_SIZE BINSTR Selected item specification

TBL_ITEM_STATUS TBL_ITEM_STATUS_SIZE BINSTR Selected item status

TBL_ITEM_UID 4 FIXED Selected item UID

152 Dimensions® CM

API Common Structures
The following sections describe the common structures used by the APIs.

ITEM_INFO

Purpose

The item information structure contains information about the currently
selected item and is typically used by the GetSelectedItem() function.

Declaration

typedef struct
{
 char iSpec[TBL_ITEM_SPEC_SIZE];
 char iFile[TBL_ITEM_FILE_SIZE];
 char iDate[TBL_ITEM_DATE_SIZE];
 char iInitials[TBL_ITEM_INITIALS_SIZE];
 char iRevision[TBL_ITEM_REVISION_SIZE];
 char iStatus[TBL_ITEM_STATUS_SIZE];
 char iStage[TBL_ITEM_STAGE_SIZE];
 char iTgtFile[TBL_ITEM_TGT_FILE_SIZE];
 long iID;
} ITEM_INFO;

Field Descriptions

 iSpec: item specification

 iFile: item file name

 iDate: item modified date

 iInitials: item modified initials

 iRevision: item revision

 iStatus: item status

 iID: item UID

 iStage: item stage

 iTgtFile: item target filename

Dimensions for z/OS Guide 153

SESSION_INFO

Purpose

The session information structure contains common data that is required
by any panel or action routine running within the client. For this reason,
any user defined functions that you write should be passed a handle to
this structure. You will receive a handle to this structure in the call to
ProcessUPanels().

Declaration

typedef struct
{
 int hConnect;
 void *hLogfile;
 char nav[NAV_SIZE];
} SESSION_INFO;

Field Descriptions

 hConnect: a handle to the current Dimensions database connection.
Is initialized when the client connects to the server in the Login
panel. Generally you should not change the value of this variable.
However, it is needed for any APIs that communicate with the
Dimensions server.

 hLogFile: a handle to the currently open log file. Only contains a
value if the user has turned on logging in the Settings panel. This
value is set by OpenCmdLog() and is needed for any calls to other log
file APIs.

 nav: a navigation field to pass back to the calling function. Contains
the contents of DIMNAV when the user has selected to jump from
one panel to another. If the user presses End on your panel, nav
should be left blank. For example, if your panel was displayed and
the user selected Command Entry from the Commands menu, you
should set nav to the contents of DIMNAV (which should contain
'COMMAND') and your function should terminate. When the core
client code gets control from your function it checks the value of this
field and provides the proper navigation to the requested function.

154 Dimensions® CM

SITEM_SPEC

Purpose

The item specification structure is used by the ParseItemSpec() function
to store item specification information.

Declaration

typedef struct
{
 char fullItemSpec[SITEM_FULLSPEC_SIZE];
 char productId[SITEM_PRODUCT_SIZE];
 char itemId[SITEM_ID_SIZE];
 char variant[SITEM_VARIANT_SIZE];
 char itemType[SITEM_TYPE_SIZE];
 char revision[SITEM_REVISION_SIZE];
} SITEM_SPEC;

Field Descriptions

 fullItemSpec: full item specification (productID + itemId + variant +
itemType + revision)

 productId: item product ID

 itemId: item ID

 variant: item variant

 itemType: item type

 revision: item revision

Dimensions for z/OS Guide 155

General Functions
The following sections describe functions that enable you to work with
ISPF and Dimensions features.

strlenb()

Purpose

This function returns the length of a blank padded string.

Prototype

long strlenb(char *searchString,
 long maxLen);

Parameters

 searchString: blank padded string to determine length of.

 maxLen: maximum length of string pointed to by searchString.

Return Codes

None.

Comments

This function can be found in many standard C libraries. However, it is
not currently in the standard IBM C library.

B2N()

Purpose

This function converts a blank padded string to a null terminated string
(and removes all trailing blanks).

Prototype

void B2N(char *blankStr,

 long maxBlankStr,

 char *nullStr,

 long maxNullStr);

156 Dimensions® CM

Parameters

 blankStr: blank delimited string to be converted.

 maxBlankStr: maximum length of blank string.

 nullStr: buffer to contain null terminated string.

 maxNullStr: size of string buffer pointed to by nullStr.

Return Codes

None.

Comments

None.

N2B()

Purpose

This function converts a null terminated string to a blank padded string
and adds any necessary trailing blanks.

Prototype

void N2B(char *nullStr,
 char *blankStr,
 long maxBlankStr);

Parameters

 nullStr: buffer to contain null terminated string.

 blankStr: blank delimited string to be converted.

 maxBlankStr: maximum length of blank string.

Return Codes

None.

Comments

None.

Dimensions for z/OS Guide 157

GetSelectedItem()

Purpose

This function gets the requested item from the selected item table.

Prototype

long GetSelectedItem(long recNum,
 ITEM_INFO *itemInfo);

Parameters

 recNum: numeric number of selected item record to retrieve. Item
numbering starts at 1.

 itemInfo: pointer to item information structure to be filled in by this
function.

Return Codes

 GET_ITEM_OK: requested item retrieved successfully.

 GET_ITEM_ERROR: requested item could not be found.

Comments

When you are processing multiple items the easiest way to retrieve each
item is within a loop that increments recNum for each successive call to
GetSelectedItem() until GET_ITEM_ERROR is returned.

ParseItemSpec()

Purpose

This function parses a full item specification into its respective pieces or
puts the pieces together into the full item specification.

Prototype

void ParseItemSpec(SITEM_SPEC *itemSpec);

Parameters

itemSpec: SITEM_SPEC structure with item specification details.
Initializes the structure with the full item specification or the item
specification pieces. The function uses this information to fill in the blank
structure variables.

158 Dimensions® CM

Return Codes

None.

Comments

None.

Log File Functions
The log file functions help simplify the log file operations performed by
the client.

OpenCmdLog()

Purpose

This function opens a command log file.

Prototype

long OpenCmdLog(void **logFile,
 char *fileName,
 long fileNameSize,
 bool refreshLog,
 bool systemLog,
 char *banner);

Parameters

 logFile: a returned file handle to open the log file.

 fileName: the name of the log file to open. If blank, the file name will
be loaded with the value of SHR_LOGFILE from the SHARED pool and
an open will be attempted.

 fileNameSize: the length of the incoming filename field.

 refreshLog: a TRUE/FALSE value indicating whether the log file
should be blanked/refreshed upon open. If TRUE, the log file will be
opened for output and any previous contents will be deleted. If
FALSE, the log file will be opened for APPEND and all previous
contents will be retained.

Dimensions for z/OS Guide 159

 systemLog: a TRUE/FALSE value indicating whether the log file is the
system log. A FALSE indicates that the log file is a temporary log file
used for a short-term operation.

 banner: (optional) a text string to print in the open log message.

Return Codes

 LOG_FILE_OK: open was successful.

 LOG_FILENAME_NOT_FOUND: file name could not be found.

 LOG_FILE_OPEN_ERROR: file could not be opened.

Comments

None.

CloseCmdLog()

Purpose

This function closes a handle to a currently open command log.

Prototype

void CloseCmdLog(void **logFile),
 char *filename,
 bool deleteLog,
 bool systemLog);

Parameters

 logFile: a handle to a currently open log file.

 fileName: the name of the log file to open. If blank the file name will
be loaded with the value of SHR_LOGFILE from the SHARED pool and
an open will be attempted.

 deleteLog: deletes the log file after close

 systemLog: a TRUE/FALSE value indicating whether the log file is the
system log. A FALSE indicates that the log file is a temporary log file
used for a short-term operation.

Return Codes

None.

160 Dimensions® CM

Comments

None.

FlushCmdLog()

Purpose

This function flushes the output buffer for a currently open log file. A
buffer flush will cause all output to be physically written to the disk.

Prototype

long FlushCmdLog(void **logFile,
 char *logFilename);

Parameters

 logFile: a handle to the currently open log file.

 logFilename: the name of the log file to refresh.

Return Codes

 LOG_FILE_OK: reopen was successful.

 LOG_FILENAME_NOT_FOUND: file name could not be found.

 LOG_FILE_OPEN_ERROR: file could not be opened.

Comments

None.

WriteCmdLog()

Purpose

This function writes a string to a currently open command log.

Prototype

void WriteCmdLog(void *logFile,
 char *outputLine,
 int blankLines);

Dimensions for z/OS Guide 161

Parameters

 logFile: a handle to a currently open log file.

 outputLine: a null terminated string to write to a log file.

 blankLines: the number of blank lines to write before the output
string.

Return Codes

None.

Comments

None.

162 Dimensions® CM

Source Code Library
The source code library contains the key components of the Dimensions
for z/OS SDK. The list below is divided into component types, some of
which have cross-references to example source code.

NOTE For the latest version of the SDK check the installation data sets
for the actual source members.

Source Code Type
Component
Type Description

C Source MDTCNAV Source code for user DLL that contains
ProcessUSelect() and ProcessUPanels() functions.
See the example on page 164.

MDTCNEW Source for sample Create Item panel. This example
demonstrates how to implement a new panel in the
ISPF client using some of the features provided by
this SDK. See the example on page 165.

CLIST Scripts
(CLIST)

MDFCCMPR Script used by the client compare feature to invoke
SuperC and display results in ISPF Browse. With the
default client installation this CLIST is invoked by
the REXX MDFRCMPR. See the example on page
174.

JCL streams (CNTL) MDTJCOMP Example compile JCL for IBM C compiler. See the
example on page 183.

MDTJLINK Example link JCL for IBM C DLL. See the example on
page 183.

REXX Scripts (EXEC) MDFRCMPR Script used by the client compare feature to invoke
a compare utility. With the default client installation
this REXX invokes the CLIST MDFCCMPR. See the
example on page 140.

MDFRTMP Script that is called to calculate a temporary data
set name. See the example on page 141.

MDFRSFF Script that is called to calculate the target/source
file name for an item operation. See the example on
page 142.

REXX Scripts (EXEC) MDFRLOG Script called by the client for log file management
during startup and shutdown. See the example on
page 138.

Dimensions for z/OS Guide 163

Header Files (H) MDTHUSR Header file that contains entry points and items of
interest for the user DLL. See the example on page
185.

MDTHDIM Header file that contains entry points and defines
for the SDK functions. See the example on page
185.

Import Libraries
(IMP)

MDFDUSR Import library created during the link of the user
DLL.

MDFDEXT Import library needed to build a user DLL using the
SDK functions.

Messages (ISPMLIB) MDTM01 ISPF message file containing messages used by
Create Item example. See the example on page
191.

Panels (ISPPLIB) MDTPUSR ISPF panel file for Create Item example. See the
example on page 191.

Link Decks (LINK) MDFDUSR Example link deck for user DLL. Demonstrates how
to use an import library to access the SDK
functions. See the example on page 193.

DLLs/Load Libraries
(LOADLIB)

MDFDEXT DLL that contains all the SDK functions.

MDFDUSR DLL that contains any user implemented extensions
to the ISPF client.

Source Code Type
Component
Type Description

164 Dimensions® CM

MDTCNAV
/*--*/
/* Copyright (C) 2004 SERENA Software, Inc. All Rights Reserved. */
/*--*/

#pragma export(ProcessUSelect)
#pragma export(ProcessUPanels)

/*--*/
/* Includes */
/*--*/
#include "mdthdim.h"
#include "mdthusr.h"

/*--*/
/* ProcessUSelect: Convert customer selections to navigation field */
/* equivalent. */
/*--*/
void ProcessUSelect(char action,
 char *DIMNAV)
{
 /* Process action code */
 switch (action)
 {
 /* Example for setting navigation field */
/* case 'Z':
 strcpy(DIMNAV, "USRNEW"); */

 break;
 default:
 break;
 }
}

/*--*/
/* ProcessUPanels: Display customer panels based on navigation */
/* field. */
/*--*/
void ProcessUPanels(SESSION_INFO *sessionInfo,
 char *DIMNAV)
{
 long rc = 0;

 /* Perform navigation to selected panel */
/*if (strcmp(DIMNAV, "USRNEW") == 0)
 rc = DisplayCreate(sessionInfo); */

 return;
}

Dimensions for z/OS Guide 165

MDTCNEW
/*--*/
/* Copyright (C) 2006 Serena Software, Inc. All rights reserved. */
/*--*/

/*--*/
/* Header Files */
/*--*/
#include <stdio.h>
#include "mdthdim.h"
#include "pcms_api.h"
#include "clientapi.h"

/*--*/
/* Defines */
/*--*/
#define SOURCE_SIZE 9
#define SOURCE_DSN_SIZE 61
#define ITMDESC_SIZE 58
#define ITMFMT_SIZE 10
#define OWNPART_SIZE 58
#define PRODUCT_SIZE 11
#define ID_SIZE 60
#define VARIANT_SIZE 34
#define TYPE_SIZE 11
#define REVISION_SIZE 34
#define ITMSPC_SIZE 56
#define WORKDIR_SIZE 60
#define WORKFILE_SIZE 60
#define OPTIONS_SIZE 69
#define COMMENT_SIZE 69
#define LIBFILE_SIZE 69
#define SVRERR_SIZE 75

/*--*/
/* DisplayCreate: Process item create panel. */
/*--*/
long DisplayCreate(SESSION_INFO *sessionInfo)
{
 long cmdRC;
 char csrPos[9];
 char dComment[COMMENT_SIZE];
 int dcpConnect;

 char dGet[2];
 long diffLoc = 0;
 long dispRC = 0;
 char dId[ID_SIZE];
 char dItemSpec[ITMSPC_SIZE];
 char dItemDesc[ITMDESC_SIZE];
 char dItemFile[LIBFILE_SIZE];
 char dItemFmt[ITMFMT_SIZE];

166 Dimensions® CM

 char dKeep[2];
 char dOptions[OPTIONS_SIZE];
 char dOwnPart[OWNPART_SIZE];
 char dProduct[PRODUCT_SIZE];
 char dRevision[REVISION_SIZE];
 char dSDSN[SOURCE_DSN_SIZE];
 char dSGroup[SOURCE_SIZE];
 char dSMember[SOURCE_SIZE];
 char dSProject[SOURCE_SIZE];
 char dSType[SOURCE_SIZE];
 char dType[TYPE_SIZE];
 char dVariant[VARIANT_SIZE];
 char dWSDir[WORKDIR_SIZE];
 char dWSFile[WORKFILE_SIZE];
 char execCmd[500];
 bool firstTime = TRUE;
 SITEM_SPEC itemSpec;
 void *logFile;
 long mainRC = PANEL_NO_ACTION;
 char nodeName[SHR_NODENAME_SIZE];
 char *outputData;
 long parmLen;
 long rc;
 char svrErr[SVRERR_SIZE];
 FILE *tempFile;
 char *tempLoc;
 char *tempPtr;
 char *varList =
"(DCISP DCISG DCIST DCISM DCISRCE DCIKEEP DCIGET DCISRCE DITMDSC "
"DITMFMT DODP DTI DTISP DTISI DTISV DTIST DTISR DTITMSPC DWSDIR "
"DWSFILE DITMFILE DCIOPTS DCOMMENT) ";
 char workArea[128];
 char workFileArea[128];
 char DIMNAV[NAV_SIZE];

 /* Set error processing */
 rc = ISPLINK("CONTROL ", "ERRORS ", "CANCEL ");

 /* Initialization */
 memset(workFileArea, 0x00, sizeof(workFileArea));
 memset(nodeName, 0x00, SHR_NODENAME_SIZE);

 memset(dComment, 0x00, COMMENT_SIZE);
 memset(dItemSpec, 0x00, ITMSPC_SIZE);
 memset(dItemFile, 0x00, LIBFILE_SIZE);
 memset(dWSDir, 0x00, WORKDIR_SIZE);
 memset(dWSFile, 0x00, WORKFILE_SIZE);
 memset(dOwnPart, 0x00, OWNPART_SIZE);
 memset(dItemFmt, 0x00, ITMFMT_SIZE);
 memset(dItemDesc, 0x00, ITMDESC_SIZE);
 memset(dId, 0x00, ID_SIZE);
 memset(dOptions, 0x00, OPTIONS_SIZE);
 memset(dProduct, 0x00, PRODUCT_SIZE);

Dimensions for z/OS Guide 167

 memset(dRevision, 0x00, REVISION_SIZE);
 memset(dType, 0x00, TYPE_SIZE);
 memset(dVariant, 0x00, VARIANT_SIZE);
 memset(dSProject, 0x00, SOURCE_SIZE);
 memset(dSGroup, 0x00, SOURCE_SIZE);
 memset(dSType, 0x00, SOURCE_SIZE);
 memset(dSMember, 0x00, SOURCE_SIZE);
 memset(dSDSN, 0x00, SOURCE_DSN_SIZE);
 memset(DIMNAV, 0x00, NAV_SIZE);
 memset(csrPos, 0x00, 9);

 logFile = sessionInfo->hLogfile;
 dcpConnect = sessionInfo->hConnect;

 /* Get node name from profile */
 rc = ISPLINK("VDEFINE ", SHR_NODENAME, nodeName, "BINSTR ",
 SHR_NODENAME_SIZE);
 rc = ISPLINK("VGET ", SHR_NODENAME, "SHARED ");
 rc = ISPLINK("VDELETE ", SHR_NODENAME);

 while(dispRC != 8)
 {
 /* Give ISPF addressability to variables */
 rc = ISPLINK("VDEFINE ", "DCISP ", dSProject, "BINSTR ",
 SOURCE_SIZE);
 rc = ISPLINK("VDEFINE ", "DCISG ", dSGroup, "BINSTR ",
 SOURCE_SIZE);
 rc = ISPLINK("VDEFINE ", "DCIST ", dSType, "BINSTR ",
 SOURCE_SIZE);
 rc = ISPLINK("VDEFINE ", "DCISM ", dSMember, "BINSTR ",
 SOURCE_SIZE);
 rc = ISPLINK("VDEFINE ", "DCISRCE ", dSDSN, "BINSTR ",
 SOURCE_DSN_SIZE);

 rc = ISPLINK("VDEFINE ", "DITMDSC ", dItemDesc, "BINSTR ",
 ITMDESC_SIZE);
 rc = ISPLINK("VDEFINE ", "DITMFMT ", dItemFmt, "BINSTR ",
 ITMFMT_SIZE);
 rc = ISPLINK("VDEFINE ", "DODP ", dOwnPart, "BINSTR ",
 OWNPART_SIZE);

 rc = ISPLINK("VDEFINE ", "DCIKEEP ", dKeep, "BINSTR ", 2);
 rc = ISPLINK("VDEFINE ", "DCIGET ", dGet, "BINSTR ", 2);

 rc = ISPLINK("VDEFINE ", "DTISP ", dProduct, "BINSTR ",
 PRODUCT_SIZE);
 rc = ISPLINK("VDEFINE ", "DTISI ", dId, "BINSTR ",
 ID_SIZE);
 rc = ISPLINK("VDEFINE ", "DTISV ", dVariant, "BINSTR ",
 VARIANT_SIZE);
 rc = ISPLINK("VDEFINE ", "DTIST ", dType, "BINSTR ",
 TYPE_SIZE);
 rc = ISPLINK("VDEFINE ", "DTISR ", dRevision, "BINSTR ",

168 Dimensions® CM

 REVISION_SIZE);
 rc = ISPLINK("VDEFINE ", "DITMSPC ", dItemSpec, "BINSTR ",
 ITMSPC_SIZE);

 rc = ISPLINK("VDEFINE ", "DWSDIR ", dWSDir, "BINSTR ",
 WORKDIR_SIZE);
 rc = ISPLINK("VDEFINE ", "DWSFILE ", dWSFile, "BINSTR ",
 WORKFILE_SIZE);
 rc = ISPLINK("VDEFINE ", "DITMFILE", dItemFile, "BINSTR ",
 LIBFILE_SIZE);

 rc = ISPLINK("VDEFINE ", "DCIOPTS ", dOptions, "BINSTR ",
 OPTIONS_SIZE);
 rc = ISPLINK("VDEFINE ", "DCOMMENT", dComment, "BINSTR ",
 COMMENT_SIZE);

 rc = ISPLINK("VDEFINE ", "SVRERR ", svrErr, "BINSTR ",
 SVRERR_SIZE);
 rc = ISPLINK("VDEFINE ", "DIMNAV ", DIMNAV, "BINSTR ", NAV_SIZE);
 rc = ISPLINK("VDEFINE ", "CSRPOS ", csrPos, "BINSTR ", 9);

 /* Retrieve variables from profile */
 rc = ISPLINK("VGET ", varList, "PROFILE ");

 /* Add panel defaults first time */
 if (firstTime)
 {
 firstTime = FALSE;
 }

 /* Initialize cursor position */
 if (strlen(dSDSN))
 strcpy(csrPos, "DCISRCE");
 else
 strcpy(csrPos, "DCISP");

 /* Display panel */
 dispRC = ISPLINK("DISPLAY ", "MDTPUSR ");

 if (strlen(DIMNAV))
 {
 dispRC = 8;
 strcpy(sessionInfo->nav, DIMNAV);
 }

 if (dispRC != 8)
 {
 /* Retrieve variables from profile */
 rc = ISPLINK("VPUT ", varList, "PROFILE ");

 /* Move fields from screen */
 strcpy(itemSpec.productId, dProduct);
 strcpy(itemSpec.itemId, dId);

Dimensions for z/OS Guide 169

 strcpy(itemSpec.variant, dVariant);
 strcpy(itemSpec.itemType, dType);
 strcpy(itemSpec.revision, dRevision);
 strcpy(itemSpec.fullItemSpec, dItemSpec);

 ParseItemSpec(&itemSpec);

 if (!strlen(itemSpec.productId))
 {
 if (strlen(dItemSpec))
 strcpy(csrPos, "DITMSPC");
 else
 strcpy(csrPos, "DTISP");

 rc = ISPLINK("SETMSG ", "MDTM012 ");
 }
 else
 {
 /* Format source file name */
 if (strlen(dSDSN))
 strcpy(workFileArea, dSDSN);
 else
 {
 if (strlen(dSMember))
 sprintf(workFileArea, "%s.%s.%s(%s)",
 dSProject, dSGroup, dSType, dSMember);
 else
 sprintf(workFileArea, "%s.%s.%s",
 dSProject, dSGroup, dSType);
 }

 if (dSDSN[0] == '\'')
 {
 tempPtr = dSDSN;
 tempPtr = tempPtr + 1;
 strcpy(workFileArea, tempPtr);
 tempPtr = strchr(workFileArea, '\'');
 if (tempPtr)
 *tempPtr = 0x00;
 }

 /* Format command for execution */
 memset(execCmd, 0x00, sizeof(execCmd));
 strcpy(execCmd, "CI ");

 /* Item Spec */
 if (itemSpec.fullItemSpec[0] == '\"')
 strcat(execCmd, itemSpec.fullItemSpec);
 else
 {
 strcat(execCmd, "\"");
 strcat(execCmd, itemSpec.fullItemSpec);
 strcat(execCmd, "\"");

170 Dimensions® CM

 }

 /* Design Part */
 strcat(execCmd, " /PART=\"");
 strcat(execCmd, dOwnPart);
 strcat(execCmd, "\"");

 /* Item Description */
 if (strlen(dItemDesc))
 {
 strcat(execCmd, " /DESCRIPTION=\"");
 strcat(execCmd, dItemDesc);
 strcat(execCmd, "\"");
 }

 /* Library Filename */
 if (strlen(dItemFile))
 {
 strcat(execCmd, " /FILENAME=\"");
 strcat(execCmd, dItemFile);
 strcat(execCmd, "\"");
 }

 /* Item Format */
 if (strlen(dItemFmt))
 {
 strcat(execCmd, " /FORMAT=\"");
 strcat(execCmd, dItemFmt);
 strcat(execCmd, "\"");
 }

 /* Comment */
 if (strlen(dComment))
 {
 strcat(execCmd, " /COMMENT=\"");
 strcat(execCmd, dComment);
 strcat(execCmd, "\"");
 }

 /* User Filename */
 strcat(execCmd, " /USER_FILENAME=\"");

 tempPtr = strpbrk(workFileArea, "::");
 if (tempPtr)
 {
 strcat(execCmd, workFileArea);
 }
 else
 {
 strcat(execCmd, nodeName);
 strcat(execCmd, "::");
 strcat(execCmd, workFileArea);
 }

Dimensions for z/OS Guide 171

 strcat(execCmd, "\"");

 /* Workset Filename */
 if (strlen(dWSDir) || strlen(dWSFile))
 {
 strcat(execCmd, " /WS_FILENAME=\"");
 if (strlen(dWSDir))
 {
 strcat(execCmd, dWSDir);
 if (dWSDir[strlen(dWSDir) - 1] != '\\' &&
 dWSDir[strlen(dWSDir) - 1] != '/')
 {
 tempPtr = strpbrk(dWSDir, "\\");
 if (tempPtr)
 strcat(execCmd, "\\");
 else
 strcat(execCmd, "/");
 }
 }

 strcat(execCmd, dWSFile);
 strcat(execCmd, "\"");
 }

 /* Keep copy in user area */
 if (strcmp(dKeep, "/") == 0)
 strcat(execCmd, " /KEEP");

 /* Options */
 if (strlen(dOptions))
 {
 strcat(execCmd, " ");
 strcat(execCmd, dOptions);
 }

 /* Displaying information message */
 rc = ISPLINK("CONTROL ", "DISPLAY ", "LOCK ");
 rc = ISPLINK("SETMSG ", "MDTM013 ");
 rc = ISPLINK("DISPLAY ", "MDTPUSR ");

 /* Execute command */
 cmdRC = PcmsClntApiExecCommand(dcpConnect,
 execCmd);

 outputData = NULL;
 rc = PcmsClntApiGetLastErrorEx(dcpConnect,
 &outputData);

 /* Write information command log */
/* WriteCmdLog(logFile, "Create Item Request Initiated...", 1);
 memset(workArea, 0x00, sizeof(workArea));

172 Dimensions® CM

 sprintf(workArea, "New item: %s",
 itemSpec.fullItemSpec);
 WriteCmdLog(logFile, workArea, 0);

 sprintf(workArea, " from: \"%s\"",
 workFileArea);
 WriteCmdLog(logFile, workArea, 0); */

 WriteCmdLog(logFile, execCmd, 1);

 if (strlen(outputData) > 0)
 {
 CheckOutputData(outputData);
 WriteCmdLog(logFile, outputData, 0);
 }

 /* Free output buffer */
 if (outputData != NULL)
 free(outputData);

 if (cmdRC == PCMS_OK)
 {
 /* Set panel return value */
 mainRC = PANEL_CMD_PROCESSED;

 if (strcmp(dGet, "/") == 0)
 {
 /* Displaying information message */
 rc = ISPLINK("CONTROL ", "DISPLAY ", "LOCK ");
 rc = ISPLINK("SETMSG ", "MDTM014 ");
 rc = ISPLINK("DISPLAY ", "MDTPUSR ");

 /* Format command for execution */
 memset(execCmd, 0x00, sizeof(execCmd));
 strcpy(execCmd, "FI ");

 if (itemSpec.fullItemSpec[0] == '\"')
 strcat(execCmd, itemSpec.fullItemSpec);
 else
 {
 strcat(execCmd, "\"");
 strcat(execCmd, itemSpec.fullItemSpec);
 strcat(execCmd, "\"");
 }

 strcat(execCmd, " /USER_FILENAME=");
 strcat(execCmd, "\"");

 tempPtr = strpbrk(workFileArea, "::");
 if (tempPtr)
 {
 strcat(execCmd, workFileArea);
 }

Dimensions for z/OS Guide 173

 else
 {
 strcat(execCmd, nodeName);
 strcat(execCmd, "::");
 strcat(execCmd, workFileArea);
 }

 strcat(execCmd, "\"");
 strcat(execCmd, " /OVERWRITE");

 /* Execute command */
 cmdRC = PcmsClntApiExecCommand(dcpConnect,
 execCmd);

 outputData = NULL;
 rc = PcmsClntApiGetLastErrorEx(dcpConnect,
 &outputData);

 /* Write information command log */
 WriteCmdLog(logFile, "Fetch Request Initiated...", 1);
 memset(workArea, 0x00, sizeof(workArea));

 strcpy(workArea, "Retrieving item: ");
 strcat(workArea, itemSpec.fullItemSpec);
 WriteCmdLog(logFile, workArea, 0);

 strcpy(workArea, " to: ");
 strcat(workArea, "\"");
 strcat(workArea, workFileArea);
 strcat(workArea, "\"");
 WriteCmdLog(logFile, workArea, 0);

 if (strlen(outputData) > 0)
 {
 CheckOutputData(outputData);
 WriteCmdLog(logFile, outputData, 0);
 }

 /* Free output buffer */
 if (outputData != NULL)
 free(outputData);
 }

 /* Set completion message */
 rc = ISPLINK("SETMSG ", "MDTM010 ");
 }
 else
 {
 memset(svrErr, 0x00, SVRERR_SIZE);
 strncpy(svrErr, outputData, SVRERR_SIZE - 1);
 WriteCmdLog(logFile, "Operation Aborted.", 0);
 rc = ISPLINK("SETMSG ", "MDTM011 ");
 }

174 Dimensions® CM

 }
 }
 }

 /* Remove ISPF addressability */
 rc = ISPLINK("VDELETE ", varList);
 rc = ISPLINK("VDELETE ", "(SVRERR CSRPOS DIMNAV) ");

 return(mainRC);
}

MDFCCMPR
 PROC 0 NEWFILE(DUMMY) OLDFILE(DUMMY) OUTDD(DUMMY) +
 DELDD(DUMMY) SYSIN(DUMMY) LISTING(DELTA) CTYPE(LINE) +
 PROCESS() UID(&SYSPREF.) BROWSE DEBUG PLIB +
 LIB(SYS1.SISPLPA(ISRSUPC))
 /* FOR PRIVATE LIB. OR OUTSIDE ISPF (INSTALLER MUST */
 /* MODIFY THE LIB PARAMETER.) */
 /***/
 /* */
 /* CLIST NAME : ISRSCLST (SUPERC LINE COMMAND VERSION) */
 /* */
 /* DESCRIPTION: */
 /* */
 /* ISRSCLST IS A SAMPLE "LINE COMMAND" CLIST THAT */
 /* DEMONSTRATES MOST OF THE CAPABILITY OF SUPERC COMPARE */
 /* PROGRAM. IT HAS LIMITED ERROR RECOVERY AND ERROR */
 /* DIAGNOSTIC CAPABILITIES. FURTHER, CERTAIN SUPERC */
 /* FUNCTIONS ARE NOT SUPPORTED (E.G. APNDLST AND */
 /* APNDUPD). */
 /* */
 /* THIS CLIST HAS BEEN DEVELOPED FOR EXECUTION IN AN */
 /* ISPF/PDF ENVIRONMENT. HOWEVER, THERE IS SOME */
 /* ADDITIONAL LOGIC (TSO/E R2 DEPENDENT AND A "PLIB" */
 /* PARAMETER) THAT WILL ALLOW THE USER TO EXECUTE THE */
 /* CLIST OUTSIDE ISPF AND FROM A PRIVATE LIBRARY. */
 /* */
 /* */
 /***/
 CONTROL NOMSG NOLIST NOCONLIST NOFLUSH
 /* SET &DEBUG = DEBUG */
 IF &DEBUG = DEBUG THEN +
 CONTROL MSG LIST CONLIST SYMLIST
 SET &RETCC = 0
 FREE FI(NEWDD,ISRS,SYSIN,OUTDD,DELDD)
 IF &NEWFILE = DUMMY THEN +
 SET &NEWFILE =
 IF &OLDFILE = DUMMY THEN +
 SET &OLDFILE =

Dimensions for z/OS Guide 175

 /***/
 /* SET UP ERROR EXIT BEFORE FOR NEWFILE VERIFICATION. */
 /***/
 NEWDD1:ERROR +
 DO
 ERROR OFF
 IF &NEWFILE ^= THEN +
 WRITE ** INVALID DATASET NAME/MEMBER OR BUSY: &NEWFILE
 IF &FIRST = THEN +
 DO
 SET &FIRST = DONE
 IF &UID ^= THEN +
 DO
 WRITE +
 USE FULLY QUALIFIED DATASET NAME WITHOUT QUOTES OR "." +
 FOR USER PREFIX.
 WRITE +
 * EXAMPLE: &UID..SUPERC.NEWIN AND .SUPERC.NEWIN +
 ARE EQUIVALENT.
 END
 ELSE WRITE +
 * USE FULLY QUALIFIED NAME WITHOUT QUOTES.
 END
 SET &NEWFILE =
 WRITENR NEW FILE :&STR()
 READ
 SET &NEWFILE = &SYSDVAL
 IF &STR('&NEWFILE') = 'EXIT' | &STR('&NEWFILE') = '' THEN +
 GOTO EXIT
 ELSE GOTO NEWDD1
 END
 /***/
 /* VERIFY/ALLOCATE NEWFILE. */
 /***/
 IF &NEWFILE ^= THEN +
 DO
 IF &SUBSTR(1:1,&NEWFILE) = . THEN +
 SET &NEWFILE = &UID.&NEWFILE
 END
 CONTROL NOMSG
 ALLOC FI(NEWDD) DA('&NEWFILE') SHR REUSE
 IF &SUBSTR(&LENGTH(&NEWFILE):&LENGTH(&NEWFILE),&NEWFILE) =) +
 THEN +
 DO

 /***/
 /* INSURE NEWFILE IS SEQUENTIAL AND IF PO- MEMBER EXITS */
 /***/
 ALLOC FI(ISRS) DA('&NEWFILE') REUSE SHR
 OPENFILE ISRS
 CLOSFILE ISRS
 FREE FI(ISRS)
 END

176 Dimensions® CM

 /***/
 /* OLDFILE FULLY QUALIFIED? */
 /***/
 CONTROL NOMSG
 /***/
 /* ERROR EXIT FOR OLDFILE VERIFICATION. */
 /***/
 OLDDD1:ERROR +
 DO
 ERROR OFF
 IF &OLDFILE ^= THEN +
 WRITE ** INVALID DATASET NAME/MEMBER OR BUSY: &OLDFILE
 IF &FIRST = THEN +
 DO
 SET &FIRST = DONE
 IF &UID ^= ' ' THEN +
 DO
 WRITE +
 USE FULLY QUALIFIED DATASET NAME WITHOUT QUOTES OR "." +
 FOR USER PREFIX.
 WRITE +
 * EXAMPLE: &UID..SUPERC.OLDIN AND .SUPERC.OLDIN +
 ARE EQUIVALENT.
 END
 ELSE WRITE +
 * USE FULLY QUALIFIED NAME WITHOUT QUOTES.
 END
 SET &OLDFILE =
 WRITENR OLD FILE :&STR()
 READ
 SET &OLDFILE = &SYSDVAL
 IF &STR('&OLDFILE') = 'EXIT' | &STR('&OLDFILE') = '' THEN +
 GOTO EXIT
 ELSE GOTO OLDDD1
 END
 /***/
 /* OLD FILE VERIFICATION CODE. */
 /***/
 IF &CTYPE = SRCH THEN +
 DO
 IF &SYSIN = DUMMY THEN +
 SET &SYSIN = PROMPT
 END
 ELSE +
 DO
 IF &OLDFILE ^= ' ' THEN +
 DO
 IF &SUBSTR(1:1,&OLDFILE) = . THEN +
 SET &OLDFILE = &STR(&UID.&OLDFILE)
 END
 ALLOC FI(OLDDD) DA('&OLDFILE') SHR REUSE
 IF &SUBSTR(&LENGTH(&OLDFILE):&LENGTH(&OLDFILE),&OLDFILE)=) +
 THEN +

Dimensions for z/OS Guide 177

 DO
 ALLOC FI(ISRS) DA('&OLDFILE') REUSE SHR
 OPENFILE ISRS
 CLOSFILE ISRS
 FREE FI(ISRS)
 END
 END
 ERROR OFF
 /***/
 /* VERIFICATION/ALLOCATION OF LISTING DSN. */
 /***/
 OUTDD1: +
 IF &OUTDD = DUMMY THEN +
 DO
 SET OUTDD = &UID..SUPERC.LIST
 IF &UID = ' ' THEN +
 SET OUTDD = &SYSUID..SUPERC.LIST
 END
 ELSE IF &SUBSTR(1:1,&OUTDD) = . THEN +
 SET &OUTDD = &STR(&UID.&OUTDD)
 CONTROL NOMSG
 FREE DA('&OUTDD')
 ERROR +
 DO
 ERROR OFF
 SET &PO = &SUBSTR(&LENGTH(&OUTDD)-1:&LENGTH(&OUTDD)-1,&OUTDD)
 IF &PO =) THEN +
 SET &DIRM = &STR(DIR(5) DSORG(PO))
 ELSE +
 SET &DIRM = &STR(RELEASE DSORG(PS))
 ALLOC FI(OUTDD) DA('&OUTDD') SPACE (50 100) BLKSIZE(3325) +
 REUSE NEW &DIRM
 IF &LASTCC = 0 THEN +
 GOTO SYSIN1
 ELSE +
 DO
 WRITE ** INVALID DATASET NAME/MEMBER OR BUSY: &OUTDD
 IF &FIRST = THEN +
 DO
 SET &FIRST = DONE
 IF &UID ^= ' ' THEN +
 DO
 WRITE +
 USE FULLY QUALIFIED DATASET NAME WITHOUT QUOTES OR "." +
 FOR USER PREFIX.
 WRITE +
 * EXAMPLE: &UID..SUPERC.LIST AND .SUPERC.LIST +
 ARE EQUIVALENT.
 END
 ELSE WRITE +
 * USE FULLY QUALIFIED NAME WITHOUT QUOTES.
 END
 SET &OUTDD =

178 Dimensions® CM

 WRITENR LISTING FILE :&STR()
 READ
 SET &OUTDD = &SYSDVAL
 IF &STR('&OUTDD') = 'EXIT' | &STR('&OUTDD') = '' THEN +
 GOTO EXIT
 ELSE +
 GOTO OUTDD1
 END
 END
 ALLOC FI(OUTDD) DA('&OUTDD') OLD REUSE /* ALLOC. AS OLD.*/
 /***/
 /* STATEMENTS (SYSIN) DATA SET. */
 /***/
 ERROR OFF
 SYSIN1: +
 IF &STR(&SYSIN) ^= DUMMY THEN +
 DO
 IF &STR(&SYSIN) ^= &STR(PROMPT) THEN +
 DO
 /***/
 /* SYSIN DSN ERROR RECOVERY. */
 /***/
 ERROR +
 DO
 WRITE ** INVALID DATASET NAME/MEMBER OR BUSY: &SYSIN
 IF &FIRST = THEN +
 DO
 SET &FIRST = DONE
 IF &UID ^= ' ' THEN +
 DO
 WRITE +
 USE FULLY QUALIFIED DATASET NAME WITHOUT QUOTES OR "." +
 FOR USER PREFIX.
 WRITE +
 * EXAMPLE: &UID..SUPERC.STMTS AND .SUPERC.STMTS +
 ARE EQUIVALENT.
 END
 ELSE WRITE +
 * USE FULLY QUALIFIED NAME WITHOUT QUOTES.
 END
 SET &SYSIN =
 ERROR OFF
 WRITENR SYSIN FILE :&STR()
 READ
 SET &SYSIN = &SYSDVAL
 IF &STR('&SYSIN') = 'EXIT' | &STR('&SYSIN') = '' THEN +
 GOTO EXIT
 ELSE +
 GOTO SYSIN1 /* RECYCLE FOR ERROR CASE */
 END
 CONT3: +
 IF &SUBSTR(1:1,&SYSIN) = . THEN +
 SET &SYSIN = &STR(&UID.&SYSIN)

Dimensions for z/OS Guide 179

 CONTROL NOMSG
 /***/
 /* VERIFICATION/ALLOCATION OF SYSIN DSN. */
 /***/
 ALLOC FI(SYSIN) DA('&SYSIN') SHR REUSE
 ALLOC FI(ISRS) DA('&SYSIN') SHR REUSE
 OPENFILE ISRS
 CLOSFILE ISRS
 FREE FI(ISRS)
 ERROR OFF
 CONTROL NOMSG
 END
 ELSE +
 DO
 /***/
 /* PROMPT FOR PROCESS STATEMENTS. */
 /***/
 SET SYSIN = &UID..SUPERC.STMTS
 IF &UID = ' ' THEN +
 SET SYSIN = &SYSUID..SUPERC.STMTS
 CONTROL NOMSG
 DELETE '&SYSIN'
 CONTROL MSG
 ALLOC FI(SYSIN) DA('&SYSIN') SPACE (5 5) REUSE NEW +
 RECFM(F,B) LRECL(80) BLKSIZE(1600)
 CONTROL NOMSG
 SET &TSYSIN = &SYSIN
 OPENFILE SYSIN OUTPUT
 IF &CTYPE = SRCH THEN +
 DO
 WRITE ENTER SRCHFOR AND ANY OTHER PROCESS STATEMENTS
 WRITE SRCHFOR STATEMENT FORMAT: SRCHFOR +
 SEARCH-PATTERN-IN-QUOTES
 END
 ELSE +
 DO
 WRITE +
 PROCESS STATEMENT FORMAT: (COMPARE TYPE) EXAMPLES:
 WRITE &STR() +
 CMPCOLM START-COLM:STOP-COLM ... (L,W) +
 CMPCOLM 1:60 75:90
 WRITE &STR() +
 LSTCOLM START-COLM:STOP-COLM (L) LSTCOLM 1:75
 WRITE &STR() +
 DPLINE 'STRING',START-POSITION (L,W) +
 DPLINE 'PAGE ',87
 WRITE &STR() +
 OR, START-RANGE +
 DPLINE 'PAGE ',87:95
 WRITE &STR() +
 OR ENTIRE LINE DPLINE 'PAGE '
 WRITE &STR() +
 SELECT MEMBER, ... (ALL) +

180 Dimensions® CM

 SELECT MEM1,NMEM2:OMEM2
 WRITE &STR() +
 LNCT NNNNNN (ALL) LNCT 999
 WRITE &STR() +
 OTHERS: NTITLE (ALL) OTITLE (ALL) CMPLINE (L,W) +
 CMPLNUM (L,W)
 WRITE &STR() +
 CMPBOFS (B) CMPCOLMN (L,W) CMPCOLMO (L,W) +
 DPLINEC (L,W)
 WRITE &STR() +
 NCHGT (L,W) OCHGT (L,W) SLIST (ALL) +
 * AND .* (ALL)
 WRITE
 WRITE ENTER CONTROL STATEMENTS.
 END
 WRITENR &STR(:)
 SET &SYSDVAL =
 READ
 DO WHILE &STR(&SYSDVAL) ^= &STR() && +
 &STR(&SYSDVAL) ^= &STR('/*')
 SET &SYSIN = &STR(&SYSDVAL.)
 IF &STR('&SYSIN') = &STR('CANCEL') THEN +
 DO
 CLOSFILE SYSIN
 GOTO EXIT
 END
 PUTFILE SYSIN
 WRITENR &STR(:)
 READ
 END
 CLOSFILE SYSIN
 SET &SYSINU = U /* INDICATE SYSIN USED */
 SET &SYSIN = &TSYSIN /* RESTORE SYSIN NAME */
 END
 END
 ELSE +
 DO
 CONTROL NOMSG
 FREE FILE(SYSIN)
 CONTROL NOMSG
 END
 /***/
 /* UPDATE FILE SECTION. */
 /***/
 DELDD1: +
 IF &DELDD = DUMMY THEN +
 DO
 SET DELDD = &UID..SUPERC.UPDATE
 IF &UID = ' ' THEN +
 SET DELDD = &SYSUID..SUPERC.UPDATE
 END
 ELSE IF &SUBSTR(1:1,&DELDD) = . THEN +
 SET &DELDD = &STR(&UID.&DELDD)

Dimensions for z/OS Guide 181

 CONTROL NOMSG
 FREE DA('&DELDD')
 ERROR +
 DO
 ERROR OFF
 /* CHECK FOR PO DATASET SPECIFICATION */
 SET &PO=&SUBSTR(&LENGTH(&DELDD)-1:&LENGTH(&DELDD)-1,&DELDD)
 IF &PO =) THEN +
 SET &DIRM = DIR(5)
 ELSE +
 SET &DIRM = &STR(RELEASE DSORG(PS))
 ALLOC FI(DELDD) DA('&DELDD') SPACE (15 30) BLKSIZE(1600) +
 REUSE NEW &DIRM
 IF &LASTCC = 0 THEN +
 GOTO INVOKE1
 ELSE +
 DO
 WRITE ** INVALID DATASET NAME/MEMBER OR BUSY: &DELDD
 IF &FIRST = THEN +
 DO
 SET &FIRST = DONE
 IF &UID ^= ' ' THEN +
 DO
 WRITE +
 USE FULLY QUALIFIED DATASET NAME WITHOUT QUOTES OR "." +
 FOR USER PREFIX.
 WRITE +
 * EXAMPLE: &UID..SUPERC.UPDATE AND .SUPERC.UPDATE +
 ARE EQUIVALENT.
 END
 ELSE WRITE +
 * USE FULLY QUALIFIED NAME WITHOUT QUOTES.
 END
 SET &DELDD =
 WRITENR UPDATE FILE :&STR()
 READ
 SET &DELDD = &SYSDVAL
 IF &STR('&DELDD') = 'EXIT' | &STR('&DELDD') = '' THEN +
 GOTO EXIT
 ELSE +
 GOTO DELDD1
 END
 END
 ALLOC FI(DELDD) DA('&DELDD') OLD REUSE /* ALLOC. OLD. */
 INVOKE1: +
 ERROR OFF
 /***/
 /* INVOKE SUPERC. */
 /***/
 /* WRITE *** SUPERC INVOKED */
 IF &LISTING ^= OVSUM && &LISTING ^= DELTA && +
 &LISTING ^= LONG && &LISTING ^= CHNG && +
 &LISTING ^= NOLIST THEN +

182 Dimensions® CM

 SET LISTING = DELTA
 IF &SYSISPF = ACTIVE && &PLIB = THEN +
 DO
 /**/
 /* ASSUME ISPF IS ACTIVE AND USER DOESN'T HAVE SUPERC IN */
 /* A PRIVATE LIBRARY. */
 /**/
 ISPEXEC SELECT PGM(ISRSUPC) +
 PARM(&LISTING.L,&CTYPE.CMP,&PROCESS.)
 SET &RETCC = &LASTCC
 END
 ELSE +
 DO
 /**/
 /* OUTSIDE OF ISPF AND/OR PRIVATE SUPERC LOAD LIBRARY USE */
 /* "CALL" INSTEAD OF "ISPEXEC SELECT." */
 /**/
 CALL '&LIB' '&LISTING.L,&CTYPE.CMP,&PROCESS.'
 SET &RETCC = &LASTCC
 END
 /* WRITE *** SUPERC RETURN CODE = &RETCC *** */
 CONTROL NOMSG
 FREE DA('&OUTDD')
 FREE FI(NEWDD OLDDD DELDD OUTDD ISRS)
 /***/
 /* BROWSE LISTING (IF IN ISPF INVIRONMENT) */
 /* ASSUMES TO E/ R2 OR BETTER SYSTEM. */
 /***/
 IF &SYSISPF = ACTIVE THEN +
 DO
 IF &BROWSE = BROWSE THEN +
 ISPEXEC BROWSE DATASET('&OUTDD')
 END
 EXIT: +
 EXIT CODE(&RETCC)

Dimensions for z/OS Guide 183

MDTJCOMP
//USERIDC JOB (USERID),CLASS=A,MSGCLASS=Z,NOTIFY=&SYSUID,
// MSGLEVEL=(1,1)
//*--
//* IBMC COMPILE
//*--
//MEMSET SET MEMBER=MDTCNAV
//CC EXEC PGM=CCNDRVR,REGION=0M,PARM='/ OPTF(DD:COPTS)'
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR
// DD DSNAME=CBC.SCCNCMP,DISP=SHR
//SYSLIN DD DSN=<INSTALL>.SDK.OBJ(&MEMBER),DISP=OLD
//SYSIN DD DSN=<INSTALL>.SDK.C(&MEMBER),DISP=SHR
//SYSCPRT DD DSN=<INSTALL>.SDK.LIST(&MEMBER),DISP=SHR
//COPTS DD *
SO,
OBJ,
LO,
EXPO,
RENT,
SHOW,
LIS,
SSCOMM,
DLL,
DEFINE(_NO_INLINING),
LSEARCH(/<uss-instance-root>/lib,
 //'<INSTALL>.SDK.H')
/*
//*

MDTJLINK
//USERIDL JOB 'LINK',NOTIFY=&SYSUID,CLASS=A,MSGCLASS=Z, 00010001
// REGION=0K 00020000
//LKED EXEC PGM=HEWL, 00030000
// PARM='CALL,DYNAM=DLL,CASE=MIXED,COMPAT=PM3,MAP,RENT,AMODE=31' 00050000
//SYSLMOD DD DSNAME=<INSTALL>.SDK.LOAD(MDFDUSR),DISP=SHR 00112001
//SYSDEFSD DD DSNAME=<INSTALL>.SDK.IMP(MDFDUSR),DISP=SHR 00113002
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR 00120000
// DD DSNAME=SYS1.CSSLIB,DISP=SHR 00120100
// DD DSNAME=TCPIP.SEZACMTX,DISP=SHR 00121000
// DD DSNAME=ISP.SISPLOAD,DISP=SHR 00122000
//SYSLIN DD DSNAME=<INSTALL>.SDK.LINK(MDFDUSR),DISP=SHR 00130002
//AAAOBJ DD DSNAME=<INSTALL>.SDK.OBJ,DISP=SHR 00140002
//IMPOBJ DD DSNAME=<INSTALL>.SDK.IMP,DISP=SHR 00160002
//SYSPRINT DD SYSOUT=* 00800000
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10)) 00840000
//SYSIN DD DUMMY 00850000

184 Dimensions® CM

MDFRCMPR
See the example on page 140.

MDFRLOG
See the example on page 138.

MDFRTMP
See the example on page page 141.

MDFRSFF
See the example on page page 142.

Dimensions for z/OS Guide 185

MDFDUSR
/*--*/
/* Copyright (C) 1999-2002 MERANT. All rights reserved. */
/*--*/

/*--*/
/* ProcessUSelect: Convert customer selections to navigation field */
/* equivalent. */
/*--*/
void ProcessUSelect(char action,
 char *DIMNAV);

/*--*/
/* ProcessUPanels: Display customer panels based on navigation */
/* field. */
/*--*/
void ProcessUPanels(SESSION_INFO *sessionInfo,
 char *DIMNAV);

/*--*/
/* DisplayCreate: Process item create panel. */
/*--*/
long DisplayCreate(SESSION_INFO *sessionInfo);

MDTHDIM
/*--*/
/* Copyright (C) 2005, Serena Software Europe, Ltd. */
/* All rights reserved. */
/* */
/* No part of this software may be reproduced, stored, or */
/* transmitted, in any form or by any means, without the prior */
/* permission in writing of Serena Software Europe, Ltd and */
/* Serena Software, Inc. */
/*--*/
/*--*/
/* Includes */
/*--*/
#include <string.h>
#include <errno.h>

/*--*/
/* External functions */
/*--*/
#pragma linkage(ISPEXEC,OS)
extern ISPEXEC() ;
#pragma linkage(ISPLINK,OS)
extern ISPLINK() ;

186 Dimensions® CM

/*--*/
/* Defines */
/*--*/
#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef bool
#define bool long
#endif

/* Selected Items Table */
#define TBL_SELECTED_ITEMS "DSELLST "

/* Selected item(s) - item spec */
#define TBL_ITEM_SPEC "TSSPEC "
#define TBL_ITEM_SPEC_SIZE 301
/* Selected item(s) - item file name */
#define TBL_ITEM_FILE "TSFILE "
#define TBL_ITEM_FILE_SIZE 1025
/* Selected item(s) - item date */
#define TBL_ITEM_DATE "TSDATE "
#define TBL_ITEM_DATE_SIZE 26
/* Selected item(s) - item initials */
#define TBL_ITEM_INITIALS "TSINIT "
#define TBL_ITEM_INITIALS_SIZE 26
/* Selected item(s) - item status */
#define TBL_ITEM_STATUS "TSSTAT "
#define TBL_ITEM_STATUS_SIZE 26
/* Selected item(s) - item stage */
#define TBL_ITEM_STAGE "TSSTAGE "
#define TBL_ITEM_STAGE_SIZE 128
/* Selected item(s) - item revision */
#define TBL_ITEM_REVISION "TSREV "
#define TBL_ITEM_REVISION_SIZE 129
/* Selected item(s) - item uid */
#define TBL_ITEM_UID "TSUID "
/* Selected item(s) - target item file name */
#define TBL_ITEM_TGT_FILE "TSTFILE "
#define TBL_ITEM_TGT_FILE_SIZE 129

/* Settings - auto-expand revisions */
#define PROF_AUTO_EXPAND "AUTOEXPD"
#define PROF_AUTO_EXPAND_SIZE 1
/* Settings - use TSO prefix on datasets */
#define PROF_USE_TSO_PREFIX "AUTOPRFX"
#define PROF_USE_TSO_PREFIX_SIZE 1
/* Settings - create log */

Dimensions for z/OS Guide 187

#define PROF_CREATE_LOG "MAKELOG "
#define PROF_CREATE_LOG_SIZE 1
/* Settings - use local project root */
#define PROF_LOCAL_ROOT "LOCLROOT"
#define PROF_LOCAL_ROOT_SIZE 1
/* Settings - use project directories in dataset names */
#define PROF_PROJECT_DIRS "WSETDIRS"
#define PROF_PROJECT_DIRS_SIZE 1
/* Current user path */
#define PROF_UAREA "UAREA "
#define PROF_UAREA_SIZE 51
/* Is project buildable? Y/N */
#define SHR_BUILDABLE "PRJBLD "
#define SHR_BUILDABLE_SIZE 1
/* Current node name entered on Login panel */
#define SHR_NODENAME "NODENAME "
#define SHR_NODENAME_SIZE 21
/* Current project root */
#define SHR_ROOTPATH "ROOTPATH "
#define SHR_ROOTPATH_SIZE 128
/* Current log file name */
#define SHR_LOGFILE "LOGFILE "
#define SHR_LOGFILE_SIZE 80
/* Temporary DSN name */
#define SHR_TEMPDSN_NAME "TMPDSN "
#define SHR_TEMPDSN_NAME_SIZE 128
/* Current project */
#define SHR_PROJECT "CURRPRJ "
#define SHR_PROJECT_SIZE 65
/* Current project - deployment model */
#define SHR_PROJECT_DEPLOY_MODEL "CURRDPLM "
#define SHR_PROJECT_DEPLOY_MODEL_SIZE 1
#define PROJECT_DEPLOY_AUTO 'A'
#define PROJECT_DEPLOY_MANUAL 'M'
/* Current project - uid */
#define SHR_PROJECT_UID "CURRPRJI "
/* Current project directory */
#define SHR_PRJ_PATH "PRJPATH "
#define SHR_PRJ_PATH_SIZE 128
/* Current project root node */
#define SHR_PRJ_RNODE_NAME "PRJRNNME "
#define SHR_PRJ_RNODE_NAME_SIZE 257
/* Current project root node OS */
#define SHR_PRJ_RNODE_OS "PRJRNOS "
#define SHR_PRJ_RNODE_OS_SIZE 5
/* Current project root node OS */
#define SHR_PRJ_RNODE_FS "PRJRNFS "
#define SHR_PRJ_RNODE_FS_SIZE 21
/* Current server name */
#define SHR_SERVER_NAME "SVRNAME "
#define SHR_SERVER_NAME_SIZE 257
/* Current REXX function */

188 Dimensions® CM

#define SHR_REXX_FUNCNO "RXFUNC "

/*--*/
/* Structures */
/*--*/
/*------------------------------*/
/* Current session info */
/*------------------------------*/
#define NAV_SIZE 20
typedef struct
{
 int hConnect; /* Current connection handle */
 void *hLogfile; /* Current log file handle */
 char nav[NAV_SIZE]; /* navigation string */
} SESSION_INFO;

/*------------------------------*/
/* Panel Defines */
/*------------------------------*/
#define PANEL_CMD_PROCESSED 0
#define PANEL_NO_ACTION 1
#define PANEL_ERROR 2

/*--*/
/* Determines end of a string in a buffer area by searching for */
/* non-blank characters. Source string is not changed. */
/*--*/
long strlenb(char *searchString, /* Source string to search */
 long maxLen); /* Maximum string length */

/*--*/
/* Convert blank padded field to null terminated. */
/*--*/
void B2N(char *blankStr, /* ptr to space str */
 long maxBlankStr, /* blank string max length */
 char *nullStr, /* ptr to null str */
 long maxNullStr); /* null str max length */

/*--*/
/* Convert null terminated to blank padded field. */
/*--*/
void N2B(char *nullStr, /* ptr to null str */
 char *blankStr, /* ptr to space str */
 long maxBlankStr); /* max space string */

/*--*/
/* Parse item specification into different parts */
/*--*/
/*------------------------------*/
/* Defines */
/*------------------------------*/
#define SITEM_FULLSPEC_SIZE 300

Dimensions for z/OS Guide 189

#define SITEM_PRODUCT_SIZE 11
#define SITEM_ID_SIZE 129
#define SITEM_VARIANT_SIZE 65
#define SITEM_TYPE_SIZE 11
#define SITEM_REVISION_SIZE 65

/*------------------------------*/
/* Structures */
/*------------------------------*/
typedef struct
{
 char fullItemSpec[SITEM_FULLSPEC_SIZE];
 char productId[SITEM_PRODUCT_SIZE];
 char itemId[SITEM_ID_SIZE];
 char variant[SITEM_VARIANT_SIZE];
 char itemType[SITEM_TYPE_SIZE];
 char revision[SITEM_REVISION_SIZE];
} SITEM_SPEC;

/*------------------------------*/
/* Prototypes */
/*------------------------------*/
void ParseItemSpec(SITEM_SPEC *itemSpec);

/*--*/
/* Open command log */
/*--*/
/*------------------------------*/
/* Defines */
/*------------------------------*/
#define LOG_FILE_OK 0
#define LOG_FILENAME_NOT_FOUND 1
#define LOG_FILE_OPEN_ERROR 2
#define LOG_FILENAME_EMPTY 3

/*------------------------------*/
/* Prototypes */
/*------------------------------*/
long OpenCmdLog(void **logFile, /* handle to log file */
 char *fileName, /* log filename */
 long fileNameSize, /* log filename size */
 bool refreshLog, /* refresh log on open */
 bool systemLog, /* use system log */
 char *banner); /* Open log file banner */

/*--*/
/* Close command log */
/*--*/
void CloseCmdLog(void **logFile, /* handle to log file */
 char *fileName, /* log file name - del only */
 bool deleteLog, /* delete log file */
 bool systemLog); /* use system log */

190 Dimensions® CM

/*--*/
/* Flush command log buffer - force buffer write */
/*--*/
long FlushCmdLog(void **logFile, /* handle to log file */
 char *logFilename); /* log filename */

/*--*/
/* Write line to command log */
/*--*/
void WriteCmdLog(void *logFile, /* handle to log file */
 char *outputLine, /* string to write */
 int blankLines); /* # blank lines to insert */

/*--*/
/* GetSelectedItem: Get item from selected item(s) table */
/*--*/
/*------------------------------*/
/* Structures */
/*------------------------------*/
typedef struct
{
 char iSpec[TBL_ITEM_SPEC_SIZE];
 char iFile[TBL_ITEM_FILE_SIZE];
 char iDate[TBL_ITEM_DATE_SIZE];
 char iInitials[TBL_ITEM_INITIALS_SIZE];
 char iRevision[TBL_ITEM_REVISION_SIZE];
 char iStatus[TBL_ITEM_STATUS_SIZE];
 char iStage[TBL_ITEM_STAGE_SIZE];
 char iTgtFile[TBL_ITEM_TGT_FILE_SIZE];
 long iID;
} ITEM_INFO;

/*------------------------------*/
/* Defines */
/*------------------------------*/
#define GET_ITEM_OK 0
#define GET_ITEM_ERROR 1

/*------------------------------*/
/* Prototypes */
/*------------------------------*/
long GetSelectedItem(long recNum, /* record number */
 ITEM_INFO *itemInfo); /* item info struct */

/*--*/
/* UpdateSelectedItem: Get item from selected item(s) table */
/*--*/
long UpdateSelectedItem(long recNum, /* record number */
 ITEM_INFO *itemInfo); /* item info struct */

Dimensions for z/OS Guide 191

MDTMUSR
MDTM010 'Item Create Successful' .ALARM=YES
'Item was created successfully in Dimensions.'

MDTM011 'Item Create Error' .ALARM=YES
'&SVRERR'

MDTPUSR
)ATTR DEFAULT() FORMAT(MIX) /* Dimensions - User Example */
 /*---*/
 /* Copyright (C) 2004 SERENA Software, Inc. All Rights Reserved. */
 /*---*/
 04 TYPE(ABSL) GE(ON) /* PROT/TEXT/BLUE/LOW */
 08 TYPE(ET) /* PROT/TEXT/TURQ/HIGH */
 0A TYPE(NT) SKIP(ON) /* PROT/TEXT/GREEN/LOW */
 0B TYPE(SAC) SKIP(ON) /* PROT/TEXT/WHITE/LOW */
 0C TYPE(AB) /* ACTION BAR */
 26 TYPE(NEF) PADC(USER) /* UNPROT/IN/TURQ/LOW */
 27 AREA(SCRL) EXTEND(ON) /* SCROLLABLE AREA DEF. */
 28 TYPE(NEF) PADC(USER) CAPS(ON) /* UNPROT/IN/TURQ/LOW */
 30 TYPE(INPUT) INTENS(NON) HILITE(USCORE) PADC(USER) CAPS(OFF)
 /* UNPROT/IN/HIDDEN */
)ABC DESC('File') MNEM(1)
 PDC DESC('Exit') MNEM(1) ACTION RUN(EXIT)
)ABCINIT
 .ZVARS=ZDFILE
 &ZDFILE = ' '
)ABC DESC('Commands') MNEM(1)
 PDC DESC('Browse Change Doc') MNEM(1) ACTION RUN(ZDBCHG)
 PDC DESC('Command Entry') MNEM(1) ACTION RUN(ZDCMD)
 PDC DESC('Batch Commands') MNEM(1) ACTION RUN(ZDBCMD)
 PDC DESC('Node Login') MNEM(1) ACTION RUN(ZDRLOGIN)
 PDC DESC('Browse Log') MNEM(1) ACTION RUN(ZDBLOG)
 PDC DESC('Set Current Workset') MNEM(1) ACTION RUN(ZDCHGSET)
)ABCINIT
 .ZVARS=ZDITEM
 &ZDITEM = ' '
)ABC DESC('Help') MNEM(1)
 PDC DESC('Using Dimensions Agent Help') MNEM(1)
 ACTION RUN(TUTOR) PARM('MDFHHLP')
)ABCINIT
 .ZVARS=ZDHELP
 &ZDHELP = ' '
)BODY CMD(ZCMD)
Õ
 File
 Commands
 HelpÕ
Ü--Õ
Ü Create Item Õ
ÕCommand ===>ZCMD Õ
SAREA39
)AREA SAREA39
ÜSource Dataset Enter "/" to select option
Õ Project . . . ´DCISP Õ Z Keep copy in user area
Õ Group . . . ´DCISG Õ Z Automatic Get
Õ Type ´DCIST Õ
Õ Member . . . ´DCISM Õ

192 Dimensions® CM

ÜOR
Õ Dataset name .´DCISRCE Õ
Õ
 Item description .DITMDSC Õ
Õ
 Item format . . .DITMFMT Õ
Õ
 Owning design part .DODP Õ
Õ
ÜItem Specification
Õ Product Id . . DTISP Õ
Õ Item Id . . . DTISI Õ
Õ Variant . . . DTISV Õ
Õ Item type . . DTIST Õ
Õ Revision. . . DTISR Õ
ÜOR
Õ Item specification .DTITMSPC Õ
Õ
ÜWorkset
Õ Directory . . DWSDIR Õ
Õ Filename . . DWSFILE Õ
Õ
 Library filename .DITMFILE Õ
Õ
ÕOptions .DCIOPTS Õ
Õ
ÕComment .DCOMMENT Õ
Õ
)INIT
 &ZCMD = ' '
 .ZVARS = '(DCIKEEP DCIGET)'
 &DIMNAV = ' '
 .CURSOR = &CSRPOS
 .HELP = 'DIMH014'
)PROC
 &CSRFIELD = .CURSOR
 VER(&DKEEP,LIST,/)
 VER(&DGET,LIST,/)
 IF (&ZCMD = 'ZDBCMD')
 &ZCMD = ' '
 &DIMNAV = 'BATCH'
 VPUT (DIMNAV) PROFILE
 IF (&ZCMD = 'ZDCMD')
 &ZCMD = ' '
 &DIMNAV = 'COMMAND'
 VPUT (DIMNAV) PROFILE
 IF (&ZCMD = 'ZDCHGSET')
 &ZCMD = ' '
 &DIMNAV = 'CHGWKSET'
 VPUT (DIMNAV) PROFILE
 IF (&ZCMD = 'ZDRLOGIN')
 &ZCMD = ' '
 &DIMNAV = 'RLOGIN'
 VPUT (DIMNAV) PROFILE
 IF (&ZCMD = 'ZDBCHG')
 &ZCMD = ' '
 &DIMNAV = 'BCHGDOC'
 VPUT (DIMNAV) PROFILE
 IF (&ZCMD = 'ZDBLOG')
 &ZCMD = ' '
 &DIMNAV = 'LOG'
 VPUT (DIMNAV) PROFILE
 IF (&DIMNAV EQ '')
 VER(&DKEEP,LIST,/)
 VER(&DGET,LIST,/)
 VER(&DODP,NB)

Dimensions for z/OS Guide 193

 IF (&DSOURCE = '')
 VER(&DSP,NB)
 VER(&DSG,NB)
 VER(&DST,NB)
 IF (&DSM NE '')
 VER(&DSM,NAME)
)HELP
 FIELD(DSP) PANEL(MDFF1401)
 FIELD(DSG) PANEL(MDFF1402)
 FIELD(DST) PANEL(MDFF1403)
 FIELD(DSM) PANEL(MDFF1404)
 FIELD(DSOURCE) PANEL(MDFF1405)
 FIELD(DISP) PANEL(MDFF1406)
 FIELD(DISI) PANEL(MDFF1407)
 FIELD(DISV) PANEL(MDFF1408)
 FIELD(DIST) PANEL(MDFF1409)
 FIELD(DISR) PANEL(MDFF1410)
 FIELD(DITMSPC) PANEL(MDFF1411)
 FIELD(DOPTIONS) PANEL(MDFF1412)
 FIELD(DKEEP) PANEL(MDFF1413)
 FIELD(DGET) PANEL(MDFFKEEP)
 FIELD(DCOMMENT) PANEL(MDFFCOM)
)END

MDFDUSR
 INCLUDE AAAOBJ(MDTCNAV)
 INCLUDE IMPOBJ(MDFDEXT)
 INCLUDE IMPOBJ(CLNTAPI)
 NAME MDFDUSR(R)

194 Dimensions® CM

Dimensions for z/OS Guide 195

Chapter 9
Tips, Troubleshooting, and
Restrictions

Tips 196
ISPF Client Troubleshooting 197
Dimensions Listener Troubleshooting 198
Restrictions 206

196 Dimensions® CM

Tips

Mapping Project Directories to Partitioned
Data Sets
The directory structure in the client-server world is hierarchical.
Mainframes use libraries (PDSE or PDS) rather than directory structures.
Libraries contain members, which are analogous to files stored in
directories on Windows or UNIX. This tip explains how to correctly map
Dimensions files and projects to data set members on z/OS machines.

On your z/OS machine, point your project directory to:

<Dimensions>::<MFIJS>.DEMO

where:

 <Dimensions> is the logical node name for your mainframe.

 <MFIJS> is your own uid.

If your Dimensions server routing is set correctly, the project file names
should be displayed in the mainframe PDS style. For example, if you have
a source file called FOO in a directory called COBOL, Dimensions sets the
default user filename to:

MFIJS.DEMO.COBOL(FOO)

About the /tmp Directory
The /tmp directory is used by Dimensions mainly for temporary working
storage for load modules. The space required is dependent on the
number and size of modules. To allow a large number of users to perform
builds and deployments in parallel at least 500 MB are required in a live
system. Use standard UNIX best practices to monitor and administer this
space and check that it is does not exceed 70% capacity under full load.
There are facilities in BPXPRMnn (see MVS Systems Initialization and

NOTE If you require a more elaborate directory structure, you may
need to set your project to Dimensions390:MFIJS and emulate the
other naming levels as sub-directories within the project directory
structure.

Dimensions for z/OS Guide 197

Tuning) that allow z/OS to warn the operator if /tmp or any other UNIX
file system is becoming full.

About the Local Metadata VSAM Data Set
The metadata file contains Dimensions server metadata for items as they
are moved between remote nodes and the Dimensions server. This local
metadata helps to optimize network resources as it contains information
that is utilized by local operations and reduces connections to the server.

ISPF Client Troubleshooting

Problems Displaying Panels when Starting
the ISPF Client
Depending on how your session allocations are setup, the easiest way to
search for allocation and search path problems is to use the ISRFIND
utility supplied by IBM. Use ISRFIND to search allocation data
dictionaries (DD) for member names and see where they are located in a
DD concatenation. ISRFIND may not work if you are using LIBDEFs to
dynamically add the Dimensions libraries.

For example, if you install a new Dimensions z/OS mainframe patch
release in the MERDIM.GA8.D8030.* data sets, the current production
installation is MERDIM.GA8.*. Your session allocations are done in a log
in procedure that should place the D8030 data sets before the GA8 data
sets in the search order.

To determine whether the search paths are setup properly, you can
execute a LISTA ST command or use ISRFIND. You can execute both
these tools from option 6 in the ISPF client, or from the command line
using TSO commands.

With ISRFIND you can, for example, enter ISPPLIB for the DD name and
press Enter. ISRFIND will list the current data sets on the ISPPLIB DD so
that you can verify whether they are in the right order. You can also
specify a member name that you want to search for, and ISRFIND will
display the data sets where it is located. This enables you to check
whether a member exists in an unexpected data set, and may explain
version problems.

198 Dimensions® CM

Dimensions Listener Troubleshooting

MVS Listener Start Up Diagnostics
The Dimensions configuration file contains the following variables that
control listener start up diagnostics:

 DM_MVS_START_CHK_CONSOLE

 DM_MVS_START_CHK_LOG

 DM_MVS_START_CHK_PATH

 DM_MVS_START_CHK_RACF

 DM_MVS_START_CHK_DIRTY

 DM_MVS_START_ABEND_DIRTY

For full details about these variables and how to set them see
"Customizing Variables in the Dimensions Configuration File" on page 67.

Example Message Output

+MDH1001I Checking RACF CLASS=FACILITY RES=BPX.DAEMON
+MDH1003I OK : RACF access confirmed
+MDH1001I Checking RACF CLASS=FACILITY RES=BPX.SUPERUSER
+MDH1003I OK : RACF access confirmed
+MDH1008I checking path /d/run/mdhd1010/prog
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ed
+MDH1008I checking path /d/run/mdhd1010/msg
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ed
+MDH1008I checking path /d/run/mdhd1010/codepage
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ed
+MDH1008I checking path /d/run/mdhd1010
+MDH1009I - GOOD - Path exists (F_OK)

Dimensions for z/OS Guide 199

+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ed
+MDH1008I checking path /d/run
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ff
+MDH1008I checking path /d
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x050001ff
+MDH1008I checking path /
+MDH1009I - GOOD - Path exists (F_OK)
+MDH1011I - GOOD - Path is readable (R_OK)
+MDH1013I - GOOD - Path is executable (X_OK)
+MDH1015I - Unix Permission Word (stat) is 0x010001ed
+MDH1004I Checking the DIRTY bit at offset 0x116 from TCB
+MDH1005I This byte contains 80
+MDH1007I This is OK
+MDH77003I Initializing console handler
+MDH77004I Console Command Listener Started
+MDH16SL0001I P67764332 T428106624 Starting pool manager

Example Message from Dirty Address Space

The example below is from a first failed run with only
DM_MVS_START_CHK_DIRTY defined:

MDH1020I To find the problem module, re-run with
MDH1021I DM_MVS_START_ABEND_DIRTY defined in dm.cfg

The example below is from a second run after defining
DM_MVS_START_ABEND_DIRTY:

MDH1017I Dimensions will not be able to switch userids
MDH1018I Check the system log for a RACF ICH420I message
MDH1018I or a BPXP015I message from HFS, which could
MDH1019I explain what module caused the problem
MDH1018I Trying a switch to DMSYS now:

For more information see the IBM book manager documentation for the
above two messages (ICH420I and BPXP015I).

200 Dimensions® CM

Problems with UNIX Access
Problems can be caused by unusual UNIX environments. The best way to
eliminate these issues is outside of Dimensions:

1 Log in to a Telnet session (not 3270).

2 Check that you have an assigned home directory (~).

3 Check that you can cd to this directory, and create a file:
cd ~
cat >test.txt
data
^d

The following messages show home directories that cannot be
reached:

fileystem full
filesystem read-only
directory permissions wrong

4 Check that you can write a file into the /tmp directory.

5 Log in as DMSYS and check that you can use the files you created in
/tmp and '~'.

6 When you execute the ls command, check the files have your unique
RACF assigned UID, marking them as your files.

Problems Switching User IDs
When the Dimensions listener can not spawn a library server in a
particular user ID, look in the system log (the LOG option in SDSF). You
may see some RACF messages about the program controlled
environment being dirty. Use the extattr command in the <DM_ROOT>/
prog directory to solve this problem.

Pay attention to the full output of the UNIX ps command from a super
user. Try to get a single USS based listener working before trying the JCL
started task or running multiple Listeners.

Dimensions for z/OS Guide 201

Configuring z/OS Mainframe Network
Nodes Correctly
Many problems can occur if remote z/OS nodes are not defined correctly.
You require the following node definitions:

 A physical node representing the machine (DNS name).

 A logical node for use with MVS.

 A logical node for use with USS.

All three nodes require a UNIX or OS operating system, not MVS.

The MVS logical node requires an MVS file system.

For full details about setting up z/OS mainframe network nodes, see
page 55.

When testing a remote node use the desktop client to perform a FETCH
(GET) of a Dimensions item to <logical::path>. We do not
recommend using a physical node name when you are testing.

Problems with Codepages
Mainframe are more sensitive to codepage issues as they do not natively
use ASCII derived data.

Check that you only use binary data when it really is binary. If you have a
valid connection to a mainframe node, but files appear incorrectly, this
may be the cause of the problem.

You cannot browse a binary file on a mainframe in the desktop client.

Problems with Server Codepages
If you get the message "codepage 0000xxxx.TAB could not be found" the
server does not know its own codepage and is using zero instead. Create
two fake codepage files in the <DM_ROOT>/codepage directory on the
Dimensions server. The filenames in this directory are in HEX, with the
'from' and 'to' codepages using four hex digits each. Copy the codepage
file you want to use to one where the server component is zero.

202 Dimensions® CM

For example, if you are using EBCIDIC page 1047 on a mainframe, and
ANSI 819 on the PC, do the following:

cd codepage
copy 04170333.TAB 00000333.TAB
copy 03330417.TAB 03330000.TAB.

For more information about codepages and how they are used in
Dimensions, see the following file:

%DM_ROOT%/codepage/codepage.txt

Interpreting ISPF Statistics
When you fetch a file from Dimensions into a PDS member, ISPF
statistics are created for it. The modification date/time of this date is
taken from the file system statistics against the item-store item (the date
that the physical file being stored was changed). Depending on what
columns you have visible in the desktop client, this may differ from the
Last update date (which shows meta-changes such as a status change)

A detailed MVS trace of the ISPF statistics creation process is available if
you are still having trouble, see page 203.

Configuring Auto-Allocation
If you mainly use mainframe code that you need to compile on a
mainframe set DM_MVS_CREATE_DEFAULT_TEXT to FB(80). The auto-
allocation feature when you extract to a non-existing PDS will work in
your favour. However, if you try to fetch an item wider than 80 you will
get an error. Otherwise, define the default to be wider or VB (such as
VB(1000)).

The problem of the data being too wide for the default occurs when you
browse an item from the ISPF client. It creates a default data set that is
FB(80) by default, which will not work if the data is actually wider than
this. The message FETCH FAILED occurs.

Dimensions for z/OS Guide 203

Setting up Tracing
For MVS problems the best trace is obtained by setting DM_MVS_TRACE
in the mainframe configuration member MDHTDCFG. This trace appears in
/tmp with a name beginning with pt. You can set the tracing variables in
MDHTDCFG on both the remote node and the server using these symbols:

DM_MVS_TRACE yes

DM_MVS_DETAIL_TRACE yes

DM_EVENT_TRACE on

DM_SDP_TRACE <directory>

Collects a detailed trace of many aspects of the listener.

On the Dimensions server you can also get a trace by adding a -trace
line to the listener.dat start up file used by the server. –trace
enables the 'poollogger', which traces the interaction of dmlsnr, dmpool,
and dmlibsrv by creating a log for each one. This only affects the startup
of Dimensions and library servers.

Traffic tracing can also provide very useful diagnostic information. The
standard utility tcpdump should be installed on your Dimensions server
(for UNIX sytems). For Windows servers Ethereal with pCap is an
alternative.

Problems with Licensing
When you start the listener, if it stops immediately and reports the error
Remote license check failed there are usually two main causes:

 The license file is invalid for Dimensions for z/OS.

 The listener cannot find the Dimensions license server.

After checking that you are licensed for Dimensions zOS, do the
following:

204 Dimensions® CM

1 Verify that the proper steps were followed during installation. In
particular check that the security setup has been performed.

2 Verify that the mainframe configuration member MDHTDCFG contains
the proper value for REMOTE_LICENSE_SERVER.

3 Verify that you can ping the server from the mainframe. If your
installation is using a port other than 671, check that the server
name is followed by :<port number>. For example:

REMOTE_LICENSE_SERVER prod_server:1500

4 Verify that the environment is being established properly for the
listener to run. Typically the member MDHTDMIV is used to set up the
proper paths for the listener installation. Check that MDHTDCFG is
being found so that the correct license server is used.

5 Verify that the Dimensions service is installed and running on the
server. The easiest way to verify is to connect the desktop client to
the same server the listener is trying to contact.

6 If your system has a firewall, check that the proper ports are open
for both inbound and outbound traffic.

Started Tasks
The number of tasks that get started for a user depends on what the user
is trying to do. A task on the mainframe is started in each of the following
instances:

 Desktop or web client session: The only time a mainframe task is
started is if the user authorizes to a mainframe node, or sends and
retrieves a file from that node (check in, get, etc.). However, a user
can authorize a node that starts an instance on that node but then
never use it. If the user works inside Dimensions but does not
authorizes to a remote node, an instance will not get started. The
listener shuts down if a connection timeout occurs or the user closes
the application.

 The ISPF client requires a listener instance to be started at log in to
send/receive temporary files while the user performs general
operations such as browse and edit. For each client session a
mainframe listener instance is started using the login credentials
provided by the user. The listener shuts down if a connection timeout
occurs or the user closes the application.

Dimensions for z/OS Guide 205

 When using deployment areas that are based on a mainframe, a
listener instance is started to get/put a file in the specified library and
then shuts down.

 A mainframe build uses the most listeners as it performs a number of
operations during the course of the build. A listener is started when
the build request is first initiated. This listener starts the PBEM and
SBEM that perform the build. As the build progresses and BOM
reports are received by the build server, the build server starts
connections to the mainframe to harvest the built targets as the
BOMs are received. The build server is a web-based application so it
cannot hold an open handle/connection for the entire build. However,
the connection only stays open long enough to collect the fetched
targets in a given step and is then closed.

An instance runs in the security space of the user. When an instance is
started it uses a specific set of user credentials so the operating system
can administer security on that process accordingly. This model protects
a process from having too much authority and from being used in a
harmful way.

SVC Exit
The SVC exit for monitoring DASD I/O only works on a DD level when a
build script passes an //*SBEM directive (DEP/TGT/OTH/TFP) for it to
start. It is not always running and it does not watch any DD unless it has
been told to. The information from this exit is written temporarily to a
PDS and then collected up and formatted into an XML Bill of Materials
report for passing back to the build server. For more information see the
Build Templates chapter of the Developer’s Reference.

Memory Usage
We recommend that you run with the listener libraries in ELPA. This
substantially reduces the memory usage used by any instance started for
each user.

206 Dimensions® CM

Restrictions

Unsupported Dimensions Commands
The following Dimensions commands are not supported by Dimensions
for z/OS:

Command Description

BI Browse items (available from an ISPF panel, but not
the command entry field).

BC Browse or print requests—request attachments are
not retrieved to mainframes. If you require
attachments, use the desktop client or the web client.

CMP Compare structures.

EDI Edit item.

EXIT Exit Dimensions.

MI Merge items.

PRCS RCS-like front end.

PSCCS SCCS-like front end.

RCI Report current items.

RCP Report current parts.

RDS Report design structure.

RPCP Report product plan.

UC Update request. Unsupported if either the /
ADD_DESCRIPTION or
/EDIT_ACTION_DESCRIPTION qualifier is specified;
otherwise, supported.

Dimensions for z/OS Guide 207

Appendix A
Temporary Data Sets

Temporary data sets created by the ISPF client have the following
naming convention:

<userid>.SRNA.<BROWSE/EDIT/CMDLOG.T<unique number>.M<unique
qualifier>.TMP

For example: MERMJT.SRNA.BROWSE.T5758.M135973.TMP

In the above pattern, the ID of the user currently logged in is used.
However, you can allocate data sets to their TSO prefix by enabling the
'Use TSO prefix for all data set allocations' option in the Settings panel. If
you enable this option, the high level qualifier for data sets will be the
current user's TSO PREFIX. The current prefix is displayed in the ISPF
main panel:

208 Dimensions® CM

For example, if the current prefix is set to MIKE, the data set name has
this pattern:

MIKE.SRNA.<BROWSE/EDIT/CMDLOG.T<unique number>.M<unique
qualifier>.TMP

The data set names will look like this:

MIKE.SRNA.BROWSE.T5758.M135973.TMP

NOTE You can tailor the name of the temporary data sets by changing
the member MDHRLIB(MDFRTMP). This member is described in the ISPF
Toolkit documentation and is used by the client to obtain the name of
the file to use for an operation. This gives you complete control over the
naming of temporary data sets.

Dimensions for z/OS Guide 209

Appendix B
Supplementary Resources

Advent 210
Disassembler 210
Examples 211

NOTE OpenText asserts no ownership over any of the supplementary
resources and they are supplied 'as is' with no warranty of any kind.

210 Dimensions® CM

Advent
ADVENT is a port of the Adventure program and is supplied as an
example application for training and demonstration. The resources are
located in:

MDH.V1453.SUPP.ADVENT.*

Advent comprises several C source modules that compile to two
programs. A start up CLIST is also supplied. The program MDOLPREC0
builds an 'h' file that you will require when compiling other modules.
See the MDOJCADV JCL stream for details about running MDOLPREC0. To
enable the game to work properly, you may need to run MDOLPRECD to
create MDOHTEXT, and then recompile those modules that use MDOHTEXT.

TGT files are included to enable you to build the application in
ChangeMan Builder for Dimensions.

Disassembler
Disassembler, available for download from CBTTape.org at http://
www.cbttape.org, is supplied as an example disassembler suite. The
application has been slightly modified and the modules renamed. The
resources are located in:

MDH.V1453.SUPP.DISASS.*

A JCL stream, MDOJDIS, shows how you can use Disassembler to
disassemble itself. The JCL stream also shows you how to run the check
program to verify that the resulting module is the same:

 MDOLRSRC: disassembles a CSECT.

 MDOLRCHK: verifies that the assembly matches the original module.

TGT files are included to enable you to build the application in
ChangeMan Builder for Dimensions.

http://www.cbttape.org

Dimensions for z/OS Guide 211

Examples
The examples located in MDH.V1453.SUPP.EXAMPLES.* include:

 MDHBADVN: a Windows CMD file that you can use to install the Advent
sample application into a Dimensions database, and set up a build in
ChangeMan Builder for Dimensions. The member contains
instructions about set up and usage.

 MDHJBTPL: sample JCL for running the templater in test mode
outside Dimensions.

 MDHJMDRV: sample JCL for displaying and editing Dimensions
metadata.

212 Dimensions® CM

Dimensions for z/OS Guide 213

Appendix C
Solving Codepage Translation
Errors

Introduction 214
Problem Definition 214
Diagnosing the Problem 216
Customizing Codepage Translation 217

214 Dimensions® CM

Introduction
This appendix describes how to solve codepage translation errors.

Problem Definition
Dimensions server codepage settings affect the translation of the
contents of data files and the recording (tagging) of codepages in item
library. Mainframe settings affect the command lines sent between the
mainframe and the Dimensions server. For example, assume that you
have the following connections defined in Dimensions:

 A server to mainframe connection using codepage 1141.

 A server to server connection using codepage 819.

Also, assume that the following variables are defined in the Dimensions
mainframe configuration file, MDHTDCFG:

 DM_MVS_CODEPAGE_SERVER 819

 DM_MVS_CODEPAGE_MAINFRAME 1141

Using the above settings, the Dimensions for z/OS listener translates
commands it sends to the server from codepage 1141 to codepage 819.
However, Dimensions source code uses codepage 1047, and because
some characters are in different positions in 1047, there are errors in the
translation. Therefore, in the example above, you need to use codepage
1141. The problem is not with the translation but with the EBCDIC data
that is presented for translation.

Dimensions for z/OS Guide 215

Special Characters
The following special characters can move in different versions of
EBCDIC:

You can customize the behavior of the special characters to match local
requirements by mapping them individually to codepoints. The default
behavior uses the Language Environment (LE) and C language locale
concept. The locale is queried to obtain the usual encoding for the special
characters on the local machine. Because the locale is "hidden" in the
setup of the mainframe, facilities are provided to enable you to check
what is happening, and to override the behavior manually.

Description
Special
Character

Number #

Dollar $

'at' @

Left bracket]

Right bracket [

Left brace }

Right brace {

Circumflex ˆ

Tilde ~

Exclamation mark !

Vertical line |

Backslash /

Grave `

216 Dimensions® CM

Diagnosing the Problem
To check what is happening, run the DMCHKSUM utility:

cd <dimensions-instance>
. ./dmprofile
dmchecksum debugcodepage

You can also run dmchksum directly from JCL:

//CKSM EXEC PGM=MDHLCKSM,
//PARM=('POSIX(ON),ENVAR("_CEE_ENVFILE=DD:DV")/debugcodepage')
//STEPLIB DD DSN=MDH.V9000.MDHLLIB,DISP=SHR
// DD DSN=MDH.V9000.MDHLLPA,DISP=SHR
//DV DD DSN=MDH.<instance>.PARM(MDHTDIMV),DISP=SHR
//CEEPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

Review the output of this report. Section 3, Special characters mapped
from cp-819, describes what default translation should occur to the
special characters based on the codepage specified in the Dimensions
configuration file variables DM_MVS_CODEPAGE_SERVER and
DM_MVS_CODEPAGE_MAINFRAME.

Section 4 contains an input and output string that shows what is
happening to the special characters. There is a problem only if this
display indicates that the output characters are not what you require.

Use the MDHLCKSM utility to fine tune codepage handling without the
overhead of running Dimensions. However, to obtain a detailed trace of
mainframe to server translation traffic, use the following variable in the
Dimensions configuration file PARM(MDHTDCFG):

DM_MVS_DEBUG_CODEPAGEY

The data is written to the HFS /tmp directory in files called codepage-
*.log. The log details the data buffer contents before and after EBCDIC
to ANSI translation when data is passed from the z/OS listener to the
Dimensions server.

NOTE DM_MVS_DEBUG_CODEPAGE has a large overhead. We recommend
not leaving it enabled for long periods.

Dimensions for z/OS Guide 217

Customizing Codepage Translation
If the translation of the special characters is not correct use one of the
following solutions.

Overriding Individual Character
Translations
You can control the codepage translation with the environment variable
DM_MVS_SPECIAL_CHARS. If you set this variable to a sequence of 13 hex
numbers (space delimited), the numbers will be used as the codepoints
for the translation, in the character order listed on page 215. The
MDHDCKSM utility outputs a shell command that sets
DM_MVS_SPECIAL_CHARS to the correct values for the default
environment. For example:

export DM_MVS_SPECIAL_CHARS="7B 5B B5 63 FC 43 DC 5F 59 4F
BB EC 79 "

Modify this command as required.

There are two places where you can place the variable
DM_MVS_SPECIAL_CHARS, and for each the syntax is slightly different.

UNIX Operations

To enable the DM_MVS_SPECIAL_CHARS variable to exist for commands
invoked from UNIX, issue the following command:

export DM_MVS_SPECIAL_CHARS="7B 5B B5 63 FC 43 DC 5F 59 4F
BB EC 79 "

Check the result by using the env command to display the environment.
To allow DM_MVS_SPECIAL_CHARS to be defined along with other
Dimensions symbols, place the export command in the shell script
dmprofile.

218 Dimensions® CM

MVS Batch and ISPF Operations

The environment space is created for the batch interface and the ISPF
client from the file MDHTDIMV that is located in
<instance>.PARM(MDHTDIMV). MDHTDIMV is usually pointed at directly
by the JCL running the required program. For example:

//prog EXEC PGM=prog,
// PARM=('POSIX(ON),ENVAR("_CEE_ENVFILE=DD:DV")/')
//STEPLIB DD DSN=MDH.V9000.MDHLLIB,DISP=SHR
// DD DSN=MDH.V9000.MDHLLPA,DISP=SHR
//DV DD DSN=MDH.<instance>.PARM(MDHTDIMV),DISP=SHR

Edit DIMV to add the definition of DM_MVS_SPECIAL_CHARS. In this case
the syntax is different and there are no quotes and no export command.

DM_MVS_SPECIAL_CHARS=7B 5B B5 63 FC 43 DC 5F 59 4F BB EC 79

If you use this environment variable setup, you should be able to re-run
the MDHLCKSM utility and verify the changed behavior. When it is working
properly, restart Dimensions.

Changing Locale
You may be able to switch to a different locale for the Dimensions
sessions, or your site default. We do not recommend this solution as it
may affect more than just Dimensions behavior. For more information
refer to the IBM Bookmanager and look for the locale section keyword
"LC_SYNTAX".

NOTE If the environment variable DM_MVS_SPECIAL_CHARS is defined it
always takes priority over changing locale.

Dimensions for z/OS Guide 219

Appendix D
Setting Up Dimensions Metadata

Introduction 220
Hierarchical Systems 220
MVS Systems 221

220 Dimensions® CM

Introduction
Dimensions uses local metadata to support local operations such as
auditing and build areas. Metadata is information about the objects in the
local file systems that relates to a single Dimensions server. If you have
multiple Dimensions z/OS listeners, use one of the following methods to
set up metadata:

 Per instance: Define separate metadata stores and use each one
with a specific listener.

 Global: Use the single metadata store for all listeners.

The first method gives better performance and may be useful in test
scenarios. For both methods, objects for which you are storing metadata
must be unique to one server, otherwise the behavior may be
unpredictable. We do not recommend multiple metadata files.

The design of the metadata is platform specific.

Hierarchical Systems
On hierarchical systems such as UNIX, Windows, Linux and USS, every
build area directory, and all build area sub-directories, contain a directory
called .metadata. Each .metadata directory mirrors the contents of its
parent sub-directory, and contains a metadata file for every fetched file
in the sub-directory. For example, for the following file on a UNIX
system:

/u/user/unittest/cobol/prog1.cob

the corresponding metadata file is located in:

/u/user/unittest/cobol/.metadata/prog1.cob

Files in .metadata directories only contain metadata, and the file
extension names have no significance.

Dimensions for z/OS Guide 221

The following metadata is recorded:

 Dimensions Unique Identifier (UID)

 Item spec

 Time stamp

 File version

 MD5 checksum

On hierarchical systems metadata is recorded silently and you do not
have to perform any actions. However, if you operate a single object from
multiple servers, unexpected results may occur.

MVS Systems
On MVS systems, metadata is stored in a central repository that is a
VSAM KSDS (Key Sequence Data Set) data set. The information stored is
the same as on hierarchical systems, keyed on the local filename.

Access to the metadata store is serialized via an ENQ name using the
following environment variables:

 DM_META_LOCK_MAJOR: major name for a protecting ENQ.

Default: SERENA

 DM_META_LOCK_MINOR: minor name for a protecting ENQ.

Default: MTABASE

222 Dimensions® CM

Dimensions for z/OS Guide 223

Appendix E
The Local Metadata Server

Introduction 224
Installation 225
Operation 226
MDHLMDRV Syntax 227

224 Dimensions® CM

Introduction
The local metadata server (LMDS) is a required Dimensions for z/OS
component that:

 Provides a mechanism for high speed shared access to VSAM files
containing all the local metadata for MVS file system objects.

 Is implemented as a TCP/IP server comprising a single address space
for all metadata consumers for one or more metadata files.

 Handles any number of metadata files concurrently, however services
will slow if there are many files.

Use /s lmdsproc to start the server and /p lmdsproc to stop it.

Improvements to LMDS
In Dimensions CM 12.2.2 and later there are changes to the way that
LMDS is used with Dimensions listeners, specifically:

 Remote area scanning is significantly faster, particularly when
selecting metadata.

 The LMDS and Dimensions agent for z/OS need to be at the same
level for 12.2.2 or later. You cannot use an earlier level LMDS to
manage a local metadata file for a 12.2.2 or later agent, and vice
versa. However, the internal file format has not changed, and there is
no required conversion process.

Dimensions for z/OS Guide 225

Installation

The local metadata server consists of:

 A program called MDHLMSRV that you need to start and run as a
started task or batch job.

 An enhanced syntax delivered by MDHLMDRV that allows control
functions to be carried out against the local metadata server.

 Additional syntax that you can use when specifying the location of
the local metadata. The parameter file MDHTDIMV contains variables
that define the location of the local metadata file for the instance,
which can be shared across the whole installation. If you use the
local metadata server, you alter the local metadata specification in
MDHTDIMV as follows:

DM_META_DATASET=+dataset@server:port

where:

• ’dataset’ is a name such as MDH.SYSTEM.MTABASE.

• ’server’ is either an IP address in numeric format or a DNS
name (the numeric format is faster), which can address a single
LPAR on which your local metadata server is running.

• ’port’ is a spare TCP/IP port for the server to use.

The data set name and ENQ/DEQ details are passed to the server for it to
use when a local metadata client initializes the local metadata handle.
ENQs are used to protect the VSAM data set from other updaters.

The program MDHLMSRV is delivered as a load module in
MDH.V1453.MDHLLPA and also uses DLLs stored in
MDH.V1453.MDHLLPA. If you are installing Dimensions for z/OS for
production use you must add the appropriate libraries to the ELPA to
reduce system overheads. The local metadata server shares some
functions with this library.

NOTE You can use the templated installation process to construct the
required local metadata support. For details see page 41.

226 Dimensions® CM

Operation
To start the local metadata server put the following sample JCL in the
procedure library or use the PROC constructed by the templated
installation process:

//MDHMSRV PROC
//*
//* -t n controls tracing.
//* n is a decimal number but its bits control the
//* tracing features.
//* 1 => communications trace
//* 2 => storage trace
//* 4 => application trace
//* Trace is only produced if the MDHTRACE DDNAME
//* is uncommented. Add the options together for
//* to combine them.
//*
//STEP100 EXEC PGM=MDHLMSRV,
// PARM='ENVAR("_CEE_ENVFILE=DD:DV")/-t 0 -p <port>'
//STEPLIB DD DISP=SHR,DSN=MDH.V1453.MDHLLIB
// DD DISP=SHR,DSN=MDH.V1453.MDHLLPA
//DV DD DISP=SHR,DSN=MDH.instance.PARM(MDHTDIMV)
//MDHPRINT DD SYSOUT=*
//*MDHTRACE DD SYSOUT=*

// PEND

NOTE

 Replace <port> with your port number for this service. The port
number must be different to the one that you use for your
Dimensions listener.

 You must use DDNAME DV for the Dimensions DIMVARs data if you
want to use /P to stop your server.

 You should create a RACF STARTED resource for your PROC that
establishes a new security environment for this process, for
example:

RDEF STARTED MDHJMSRV.MDHJMSRV STDATA(USERID(user)
TRUSTED(NO))

 You can secure the local metadata data set so that ordinary users do
not have access to it. The only user ID that requires access to the
local metadata data set is the one used to start it.

Dimensions for z/OS Guide 227

MDHLMDRV Syntax
The MDHLMDRV program has extended syntax for controlling the
metadata server, for example, to cancel it or close it correctly. Run the
MDHLMDRV program, connect to the server, and use the special
commands detailed below.

NOTE You can continue lines using '-' as the indicator. Lines ending with
this indicator have the '-' removed and the next line, after stripping
leading spaces, is logically appended to the current command.

Command Parameters Description

-- Comment operator

* Comment operator

// Comment operator

Comment operator

ABEND Do an ABEND (z/OS only).

BULKDEL //mask[(memmask)] Delete matching the metadata
collection from the LMDS controlled
database.

CLOSE Destroy the session and disconnect
from LMDS.

DELREC //filename [OPT|NOOPT] Delete a metadata collection.

DESTROY Destroy the current metadata
collection.

DISPLAY Display the current saved metadata
collection.

ENDLOOP End of loop.

EXIT Exit program.

GET //filename [DIFF| NODIFF] Get the metadata and save the values.

GETST //filename Get structure.

GR //filename Get raw metadata from disk and dump
in HEX format with IDs and lengths.

HELP

LOOP Start of a repeated loop.

228 Dimensions® CM

NOTE A copy operation can be effected by:

 GET //filename(member)

 (Optional) SET tag value

 …

 PUT //newfilename(member2)

The physical file is not copied.

NEW Create a new metadata collection.

OPEN [-t n] Create a session and connect to LMDS.
Use -t to set (hex) tracing options. The
connection fails silently and is retried on
the next operation. Trace goes to the
log file.

PUT //filename Put metadata using the saved values to
a file.

QUIT Exit the program.

REPORT Request a report from the LMDS about
connected databases and users. This is
written to LMDS MDHPRINT.

SCAN //mask [(memmask)]
[KEYONLY | ALL
[NODISPLAY]]

Search the database controlled by
LMDS for matching objects.

SET tag value Specify a new value for a specific tag in
the metadata collection. For example,
to replace the current value of the tag
’fileversion’:
SET fileversion 2

SLEEP n Wait n seconds.

SMO ON/OFF Set member option.

STOPDB Ask LMDS to shut down using a specific
database.

STOPSRVR Ask LMDS to initiate close down. When
all connected databases have
disconnected the server closes down.

Command Parameters Description

Dimensions for z/OS Guide 229

You can use the following sample JCL when running MDHLMDRV:

//RUN EXEC PGM=MDHLMDRV,
// PARM='ENVAR("_CEE_ENVFILE=DD:DV")/DD:I DD:P DD:T'
//STEPLIB DD DISP=SHR,DSN=MDH.V1453.MDHLLIB
//* If you have loaded the necessary DLLs into the LPA you
//* can comment out the next line with impunity
// DD DISP=SHR,DSN=MDH.V1453.MDHLLPA
//* Environment variables for the instance are here - this
//* specifies the metadata dataset and the major and minor locks
//DV DD DISP=SHR,DSN=MDH.MDHD2204.PARM(MDHTDIMV)
//* Output from commands goes here...
//P DD SYSOUT=*
//* trace of activity goes here
//T DD SYSOUT=*
//* command stream is here
//I DD *
--
-- Start the metadata session
--
OPEN -t 0
report
stopdb
stopsrvr
CLOSE
/*

You can use the /P command to stop the LMDS server. The LMDS server
invokes MDHLMDRV using a special form of the input commands
equivalent to the following JCL:

//RUN EXEC PGM=MDHLMDRV,
// PARM='ENVAR("_CEE_ENVFILE=DD:DV")/-stopserver'
//STEPLIB DD DISP=SHR,DSN=MDH.V1453.MDHLLIB
//* If you have loaded the necessary DLLs into the LPA you
//* can comment out the next line with impunity
// DD DISP=SHR,DSN=MDH.V1453.MDHLLPA
//* Environment variables for the instance are here - this
//* specifies the metadata dataset and the major and minor locks
//DV DD DISP=SHR,DSN=MDH.MDHD2204.PARM(MDHTDIMV)
//* Output from commands goes here...
//MDHPRINT DD SYSOUT=*
//* trace of activity goes here
//MDHTRACE DD SYSOUT=*

230 Dimensions® CM

Dimensions for z/OS Guide 231

Appendix F
Viewing USS SYSLOG Messages

This appendix explains how to view USS SYSLOG messages.

Dimensions 14.2 and later: This facility is less important, compared to
earlier Dimensions releases, as most messages are issued via WTO. But
it may be easier to use the method described below.

To view USS SYSLOG messages:

1 Create a file called /etc/syslog.conf that contains the line *.* /
dev/console.

2 Create a PROC for SYSLOGD, see the example below. Check there is
a userid called syslogd. Create one if it does not exist.

//SYSLOGD PROC
//*
//* Start z/os USS system logger
//*
//SYSLOGD EXEC PGM=SYSLOGD,REGION=30M,TIME=NOLIMIT,
// PARM='POSIX(ON),ALL31(ON)/-f /etc/syslog.conf'
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSERR DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSIN DD SYSOUT=*
// PEND

3 Create a RACF profile to control the execution userid of the new
PROC:

RDEF STARTED SYSLOGD.SYSLOGD
UACC(NONE)
STDATA(USER(SYSLOGD)
TRUSTED(NO))

232 Dimensions® CM

4 Allow SYSLOGD super user and daemon:

PE BPX.SUPERUSER CLASS(FACILITY) ID(SYSLOGD)
ACCESS(READ)

PE BPX.DAEMON CLASS(FACILITY) ID(SYSLOGD) ACCESS(READ)

5 Start the PROC:

/S SYSLOGD

If PROC exits immediately it has started a daemon, which you can
see running via the SDSF primary command ps.

For more details USS SYSLOG messages see z/OS VIR3.0 UNIX System
Services Planning, chapter 26.8.1, in the z/OS VIR3.0 UNIX System
Services Bookshelf.

Dimensions for z/OS Guide 233

Appendix G
MVS DDNAME Caching

Overview 234
Dimensions Configuration Symbols 234
Wildcard Patterns 237
Data Set Selection Expression 238

234 Dimensions® CM

Overview
The DDNAME caching feature is a z/OS only performance enhancement
that optimizes repeated use of the same data set, file, or container object
in the same application.

To get the most out of this enhancement you need to add new
parameters to the Dimensions configuration file. You should also be
familiar with diagnostic procedures that can help you to solve problems,
for example, specifying which data sets are cached, how they are
cached, and checking that they have been cached.

Dimensions Configuration Symbols
This section describes the symbols that you need to define in the
Dimensions configuration file. The file is located in the following data set:

MDH.V1020.MDHPARM(MDHTDCFG)

DM_MVS_DDC_DISABLE
A global override that turns off all caching.

DM_MVS_DDC_TRACE
Creates one trace file per process in the directory defined by the symbol
DM_TMP. Specify one of the following trace levels (higher numbers
generate more diagnostics data):

 1: Only key events are traced, for example, a data set is cached.

 3: Generates a function trace.

 4: Generates extra information about data set DCB characteristics
obtained from the catalog.

 5: Generates additional tracing of the expression evaluator.

 9: Generates detailed cache tracking.

Dimensions for z/OS Guide 235

When you initially set up DDNAME caching, use DM_MVS_DDC_TRACE to
confirm that the data sets that you expect are actually being cached. This
will reveal any logic errors in the selection expressions, or any other
errors.

DM_MVS_DDC_VOLUME_FILTER
To increase speed, the DCB characteristics of all data sets are obtained
directly from the catalog. This is only possible if the data set is on disk,
and not migrated using DFHSM. In this situation, the code recognizes a
disk volume that indicates that HSM has migrated the data set. This
parameter allows you to change the naming convention that is used.

If you set this parameter there will better handling of migrated data sets.
The initial allocation when the data set is still on tape occurs the same as
when DDNAME caching is disabled. The presence of this optimization
does not change the pattern in which data sets get recalled or not. The
original caller of the file ’open’ command can elect to abort the request
without a recall being issued, and DDNAME caching does not interfere.

For example:

DM_MVS_DDC_VOLUME_FILTER MIG*

This indicates that any volume label beginning with MIG is to be treated
as migrated.

For details of the pattern matching features of this field, see "Wildcard
Patterns" on page 237.

DM_MVS_DDC_LOGIC
The main form of caching is DDNAME caching where the allocation of a
container PDS is only performed once, and subsequent operations,
including those that use different member names to the original request,
re-use the allocated DDNAME. This results in the data set being allocated
for the life of the main program. Examples of a main program are the z/
OS library server process (per user log in), and the PBEM (Primary Build
Execution Monitor) build engine (MDHLPBEM).

We do not recommend that you enable caching on every data set as this
may produce conflicts with other processes that need exclusive control of

236 Dimensions® CM

the data set. Instead, use the facility described below to control the data
sets that are cached and those that are not.

The Dimensions configuration variable DM_MVS_DDC_LOGIC names a
file that contains the data sets that you want to cache. This parameter
normally names a member in the PARM data set of the Dimensions
instance. For example:

DM_MVS_DDC_LOGIC //'MDH.MDHD1013.PARM(MDHTDDC)'

For details about writing this file see "Data Set Selection Expression" on
page 238.

An additional level of caching is provided for specifically targeted data
sets. These are cached in main memory when they are first used and are
retrieved from memory as required. This additional level of caching is
ideal for small, frequently used data sets that never change, for example,
build templates that are repeatedly re-used by the PBEM as each target
is processed. Caching this type of data set in memory substantially
improves performance.

You can code a list of these parameters suffixed with a number starting
with 1. Each entry in the list names a container whose members should
be cached in memory. The containers can be MVS style data sets or HFS
style directories, allowing the optimization to work when the template
library resides on HFS in a UNIX like structure.

The values are actually patterns, for details see "Wildcard Patterns" on
page 237.

Examples:

DM_MVS_DDC_MEMORY_PATTERN_1 MDH.*.TEMPLATE
DM_MVS_DDC_MEMORY_PATTERN_2 USER.TEST.TEMP*
DM_MVS_DDC_MEMORY_PATTERN_3 /u/user/mytemplates/*
DM_MVS_DDC_MEMORY_PATTERN_4 /u/user/test/this-directory

DDNAME caching can still be enabled for the same data sets, in which
case the initial read into memory will use the cached DDNAME, making it
slightly faster.

Accidentally enabling caching on a data set may cause confusion. Edits to
a member will be completely ignored once the member has been initially
cached in memory.

Dimensions for z/OS Guide 237

Members are only read into memory when they are first used.
Consequently, this functionality is suitable for use on very large PDSs
where only a few active members are used.

DM_MVS_DDC_BPXWDYN
This symbol causes all data set allocations to be performed using the
method used in Dimensions 10.1.1 and earlier. Only use this symbol
when instructed to do so by Support.

Wildcard Patterns
This section describes how to use pattern matching.

The same type of patterns are found in:

 The DM_MVS_DDC_VOLUME_FILTER parameter.

 The DM_MVS_DDC_MEMORY_PATTERN parameter.

 The second argument to the "LIKE" keyword in the logic expression
language (see "Operators" on page 240).

The patterns are modeled on DOS rather than UNIX. The two special
characters are:

 * (any number of characters).

 ? (an individual character).

When you expand using the "*" pattern, neither UNIX style slashes ’/’ or
MVS style dots ’.’ are special. In other words, an asterisk ’*’ in the middle
of a data set can match multiple qualifiers and multiple levels in a UNIX
path.

Examples:

 USER.TEST.COBOL: this is an exact match.

 USER.*: matches any data sets beginning with ’USER’.

 U*: matches any data sets that have an HLQ beginning with ’U’.

 USER.*.TEMPLATE: matches the user's template libraries.

238 Dimensions® CM

 USER.*.TEMP*: multiple use of ’*’ is allowed.

 USER.*.T?MPLATE: allows any single character after ’T’.

 US?R.*.T?M*: matches USER.TOMTOM.DATA.

 /user/subdir*: matches directories beginning with ’subdir’ and
their contents.

 /user/subdir/*: forces ’subdir’ to be a complete directory name
and matches its contents.

Data Set Selection Expression
In the file named by the parameter DM_MVS_DDC_LOGIC there is an
expression that enables the DDNAME caching logic to determine if a
given data set should be cached or not. This file is in a free format and is
case insensitive. You can insert blanks, tabs, and new lines and store it in
HFS or MVS. If the file is in an F style MVS data set, line numbers should
be removed automatically, but only from the last 8 bytes of the line. If
your editor preferences put them anywhere else, or you use VB data sets
with line numbers, you should remove them manually. Use the ISPF
editor UNNUM command.

Various symbols or variables are exposed to the expression and you can
use them to specify whether to cache a data set. The expression has full
support for brackets, to any depth, and logical combinations (AND, OR,
NOT).

The following sections specify the variables that the expression language
supports.

Dimensions for z/OS Guide 239

Strings
You can delimit strings with either double or single quotes.

Examples:

 "Hello World"

 'Goodbye Cruel World'

 "My data set"

You can also put a literal quote into a string using backslash:

'Aministrator\'s data set'

Numbers
Only whole integers are supported and you enter then directly.

Examples:

 1234

 80

240 Dimensions® CM

Operators
Operators act on arguments to produce a result. Most are Boolean and
return a true or false result. The integer 0 (zero) is false and all other
numbers are true.

The following table lists the valid operators, some have multiple ways
that they can be spelled. Normal English operator precedence occurs. If
you are in any doubt, use brackets ’()’ to make sure that the order of
evaluation is correct. The quantitative operators (such as ’>’) require
numeric arguments.

Operator Description Example

==,=,EQ Equals i_lrecl == 80
s_recfm == "FB"

!=,<>,NE Not equals i_lrecl <> 80
s_recfm != "FB"

>=,GE,GTE Greater than or equal to i_lrecl >= 80

<=,LE,LTE Less than or equal to I_lrecl <= 80

>,GT Greater than I_lrecl > 90

<,LT Less than I_lrecl < 80

~,LIKE,MATCHES Wildcard pattern match s_recfm like "F*"
s_volume like "A?12*"

!,NOT Not, negates the expression
on the right.
"!" is a movable character in
EBCDIC, use NOT instead.

! (i_lrecl == 80 and s_recfm == "FB")

 &&,&,AND AND (join two expressions if
they are both true).

(i_lrecl == 80) and
(s_recfm == "FB")

||,|,OR OR (join two expressions if
either are true).

(i_lrecl == 80) or (s_recfm == "FB")

(,) Brackets ((s_hlq = "MDH") and
((i_lrecl == 80) or (s_recfm == "FB"
)))

Dimensions for z/OS Guide 241

Variables
Various variables are exposed to the expression. Integer values have the
prefix ’i_’ and string values have the prefix ’s_’.

Variable Description Example

s_dataset Specifies the data set name of
the container. MVS only (not
HFS) and does not have any
decoration (slashes or
quotes). Is fully qualified and
has the userid as the HLQ if
relevant.

(s_dataset == "MDH.MDHD1011.PARM")
(s_dataset LIKE "MDH.*")

s_volume Specifies the volume label
that the data set resides on.
You can use this variable to
exclude special data sets from
caching if they are all stored
on similarly named volumes.

! (s_volume LIKE "SYS*")

s_hlq Specifies the HLQ (High Level
Qualifier) that is the left part
of the data set name.
Note: Using s_hlq is quicker
than using s_dataset
(s_dataset like "MDH.*").

s_hlq == "MDH"

s_llq Specifies the LLQ (Low Level
Qualifier) that is the left part
of the data set name.
Note: Using s_llq is quicker
than using s_dataset
(s_dataset like
"*.TEMPLATE").

s_llq == "TEMPLATE"

s_recfm Specifies the record format as
a single string in the usual JCL
style. Possible values are
F,V,U,FB,VB,FBA,VBA,FBS,VBS
,FA,VA,FS,and VS.

s_recfm == "FB".
s_recfm like "*A"

i_f True if the data set has FIXED
length records.

i_f and i_lrecl==80

i_v True if the data set has
VARIABLE length records.

i_v and i_lrecl==80

242 Dimensions® CM

i_u True if the data set has
UNDEFINED records.
Note: This is a good condition
for a LOAD module.
Dimensions does not support
RECFM=U for anything other
than LRECL=0 LOAD modules.

i_u and i_lrecl==0

i_b True if the records are
BLOCKED.

i_f and i_b

i_s True if the records are
SPANNED (VB) or SHORT
(FB).

i_f and i_b and i_s

i_a True if the records have ASA
characters.

i_a

i_m True if the records have the
MACHINE type.

i_m

i_lrecl The numeric LRECL of the
data set.

i_lrecl == 80

i_blksize The numeric blocksize of the
data set.

I_blksize > i_lrecl

i_pdse True if the container is a PDSE
rather than a PDS.

s_context A context string. Is currently
unused, but in future releases
may contain a string
indicating that special logic is
required. In the future, a
different caching strategy may
be required for different parts
of the product.

(
s_context = "BUILD")
&&
(
// other build conditions for caching
)

)
||
(

(s_context = "LISTENER")
&&
(
// other listener conditions for caching
)

)

Variable Description Example

Dimensions for z/OS Guide 243

Example Logic File
// this is a comment line, like C++
//
//
(

// we want all template data sets
(

(s_llq == "TEMPLATE" || s_llq == "TPL")
and
(l_lrecl == 80 and s_recfm = "FB")

)
||
// well take anything in our special build area
(

(s_dataset like "some.build.*")
)
||
// we don't want load modules, unless they are in a particular area
(

(i_u
&&
(

(s_dataset like "some.*")
Or (s_dataset like "some.thing.else.*")
)

)
) // load modules

) // end expression

244 Dimensions® CM

Dimensions for z/OS Guide 245

Appendix H
Enabling SSL Support on the z/OS
Listener

Introduction 246
Enabling SSL Support 246

246 Dimensions® CM

Introduction
This appendix describes how to enable SSL (Secure Socket Layer)
support on the z/OS listener. You need administrator rights on a
Dimensions server machine on Windows or UNIX, as well as
administrator rights to Dimensions for z/OS.

Enabling SSL Support
To enable SSL support:

1 Choose a password for SSL and make a note of it, you will need it
later in this procedure.

2 On z/OS, add the following to PARM(MDHTLSNR):

-ssl
-ssl_password $$DMSECURE$$

3 On z/OS, in HFS $DM_ROOT, create a directory called ’CA’.

4 On a server, create the following registry.dat file as follows:

cd $DM_ROOT/dfs
mv registry.dat registry.dat-old
dmpasswd -ssl_password -add -pwd your-password

5 Transfer dfs/registry.dat from the server to z/OS in ASCII (text
mode)

6 Verify that the following variable and value pair exists in the
Dimensions configuration file PARM(MDHTDCFG) on z/OS:

DM_DFS %DM_ROOT%dfs

7 Restore the server's original registry:

cd $DM_ROOT/dfs
rm registry.dat
mv registry.dat-old registry.dat

Dimensions for z/OS Guide 247

8 On the server use the following commands to create the certificate
files. You will need openssl at a matching level (0.9.8). These
commands are interactive and will prompt you for information.
Where required, use the SSL password that you created.

openssl req [-config openssl.cnf] -newkey rsa:512 -sha1
-keyout serverkey.pem -out serverreq.pem

openssl x509 -req -in serverreq.pem -sha1 -extensions
v3_ca -signkey serverkey.pem -out servercert.pem

cat servercert.pem serverkey.pem > server.pem

openssl x509 -subject -issuer -noout -in server.pem

openssl dhparam -check -text -5 512 -out dh512.pem

openssl dhparam -check -text -5 1024 -out dh1024.pem

9 Transfer the following files via FTP to the CA directory in ASCII (text
mode)

put server.pem $DM_ROOT/CA
put dh512.pem $DM_ROOT/CA
put dh1024.pem $DM_ROOT/CA

248 Dimensions® CM

	Table of Contents
	Introduction
	Getting Started
	Overview of Dimensions for z/OS
	Item Libraries
	User Files on z/OS Mainframes
	UNIX Systems Services
	Moving Files Between Platforms
	Codepage Conversion
	Upload Rules for z/OS Files
	Using z/OS Mainframe Node Names
	Browsing MVS Deployment Areas in Dimensions Clients
	Streams on the Mainframe

	Installing Dimensions for z/OS
	Installation Prerequisites
	Resource Requirements
	Software Prerequisites
	System Prerequisites

	Licensing Dimensions for z/OS
	Preserving Existing Installations
	Installation Roadmap
	Step A Preparing the Installation
	Step A-1 Unpacking and Moving the Distribution
	Step A-2 Expanding to Intermediate Format
	Step A-3 Constructing System Libraries

	Step B Setting Up Security for a Dimensions for z/OS Listener
	Overview of Security
	Step B-1 Setting Up RACF/USS Security

	Step C Setting Up an Instance of Dimensions for z/OS
	Overview of Setup
	Step C-1 Customizing Variables in the Installation Template Job
	Step C-2 Running the Templated Installation Process
	Step C-3 Setting Up Instance Security
	Step C-4 Starting the Local Metadata Server
	Step C-5 Starting the z/OS Instance
	Step C-6 Setting Up Mainframe Network Nodes
	Step C-7 Verifying the Installation of the Instance

	Step D Installing the ISPF Client for an Instance
	Step D-1 Setting Up the ISPF Client for an Instance
	Step D-2 Verifying the ISPF Installation

	Optional Installation Steps
	Installing the Watcher SVC Exit
	Customizing Variables in the Dimensions Configuration File
	Setting Up the Scripting Interface

	MVS Listener Memory Check

	ISPF Client Quick Start Tutorial
	Introduction
	Prerequisites
	Exercise 1 Log In to Dimensions
	Exercise 2 Take a Quick Tour of the Menus
	Exercise 3 Create a New Project and Directory
	Exercise 4 Set the Project and Project Root
	Exercise 5 Change Directories
	Exercise 6 Create a New Item
	Exercise 7 Browse the Item
	Exercise 8 Check Out the Item
	Exercise 9 Undo the Check Out
	Exercise 10 Action the Item
	Exercise 11 Display Help Panels
	Exercise 12 Log Off from Dimensions
	Summary

	Operating a Dimensions Instance
	Starting a Dimensions Instance
	Stopping a Dimensions Instance
	Viewing OMVS Processes from SDSF
	Altering Message Handling in your Dimensions Listener
	Started Tasks

	Using the ISPF Client
	Logging In to the ISPF Client
	Profiles
	Password Retention

	About the ISPF Client Main Panel
	About the Main Panel Display
	Configuring the Main Panel Display
	Expanding Directories
	Displaying all Item Revisions
	Viewing Item History
	Setting Preferences
	Displaying the ISPF Client Version Number

	Invoking Help
	Keyboard Shortcuts in Help Topics

	Setting the Project Root and the Current Project
	Performing Actions on Items
	Checking Out Items
	Checking In Items
	Undoing a Check Out
	Browsing Items
	Getting (Fetching) Items
	Comparing Items
	Editing Items
	Updating Items
	Actioning Items
	Deleting an Item
	Deploying an Item

	Performing Actions on Groups of Items
	Creating Items
	Browsing and Printing Requests
	Building
	Building Items
	Building Projects
	Building Requests
	Building Baselines
	Impacted Targets

	Entering Dimensions Commands
	Repeating Recently Used Commands
	Using the History List

	Processing Commands in Batch Mode
	Logging In to a Remote Node
	Changing Passwords
	Browsing the Command Log File
	Entering TSO Commands
	Logging Off from the ISPF Client

	Using the Batch Interface
	Overview
	DD Names
	LOGIN
	COMMAND and SYSIN
	SYSPRINT
	SYSOUT

	Return Codes
	Securing Passwords
	Example JCL Jobstream
	Using the Batch Interface Interactively

	Using the Command-Line Client on USS
	Using the Command-Line Client
	Invoking Help

	Customizing and Extending the ISPF Client
	Introduction
	ISPF Client Extensions
	MDFRLOG
	MDFRCMPR
	MDFRTMP
	MDFRSFF
	MDFRVIEW
	Client Executable Components

	API Interface
	Main Header File
	ISPF Variables
	API Common Structures
	General Functions
	Log File Functions

	Source Code Library
	MDTCNAV
	MDTCNEW
	MDFCCMPR
	MDTJCOMP
	MDTJLINK
	MDFRCMPR
	MDFRLOG
	MDFRTMP
	MDFRSFF
	MDFDUSR
	MDTHDIM
	MDTMUSR
	MDTPUSR
	MDFDUSR

	Tips, Troubleshooting, and Restrictions
	Tips
	Mapping Project Directories to Partitioned Data Sets
	About the /tmp Directory
	About the Local Metadata VSAM Data Set

	ISPF Client Troubleshooting
	Problems Displaying Panels when Starting the ISPF Client

	Dimensions Listener Troubleshooting
	MVS Listener Start Up Diagnostics
	Problems with UNIX Access
	Problems Switching User IDs
	Configuring z/OS Mainframe Network Nodes Correctly
	Problems with Codepages
	Problems with Server Codepages
	Interpreting ISPF Statistics
	Configuring Auto-Allocation
	Setting up Tracing
	Problems with Licensing
	Started Tasks
	SVC Exit
	Memory Usage

	Restrictions
	Unsupported Dimensions Commands

	Temporary Data Sets
	Supplementary Resources
	Advent
	Disassembler
	Examples

	Solving Codepage Translation Errors
	Introduction
	Problem Definition
	Special Characters

	Diagnosing the Problem
	Customizing Codepage Translation
	Overriding Individual Character Translations
	Changing Locale

	Setting Up Dimensions Metadata
	Introduction
	Hierarchical Systems
	MVS Systems

	The Local Metadata Server
	Introduction
	Improvements to LMDS

	Installation
	Operation
	MDHLMDRV Syntax

	Viewing USS SYSLOG Messages
	MVS DDNAME Caching
	Overview
	Dimensions Configuration Symbols
	DM_MVS_DDC_DISABLE
	DM_MVS_DDC_TRACE
	DM_MVS_DDC_VOLUME_FILTER
	DM_MVS_DDC_LOGIC
	DM_MVS_DDC_BPXWDYN

	Wildcard Patterns
	Data Set Selection Expression
	Strings
	Numbers
	Operators
	Variables
	Example Logic File

	Enabling SSL Support on the z/OS Listener
	Introduction
	Enabling SSL Support

