
Software version: 14.7

Dimensions CM

Dimensions CM Make Guide

Copyright © 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors
(“Open Text”) are as may be set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Product version: 14.7

Publication date: December 8, 2023

Dimensions CM Make Guide 3

Table of Contents

Chapter 1 Guide to OpenText™ Dimensions CM Make. 5
Overview of Dimensions CM Make . 6

Dimensions CM Make Processes . 6
Dimensions CM Make Architecture . 6

Online Examples . 8
Setting Up MCX_LISTEN for Multi-Homed Servers 8
Dimensions CM Make Terminology . 8
Invoking Dimensions CM Make . 9
Integrating with Dimensions CM Versioning. 10

The Current Project . 10
The --configuration-path Option . 12
The pcmsfile . 12
Possible Problems When Preserving Files . 20
Specifying Target Reuse. 20
Automatic Dependency Generation . 21

Building Object Libraries and Other Containers . 22
Building Double Colon Targets . 23
Options Summary . 24
Improving Dimensions CM Make Efficiency . 26
Behavior of Dimensions CM Make Under Windows 27
Comparing Behavior of Dimensions CM Make to GNU Make. 27
Limitations in NMAKE Compatibility . 28

Chapter 2 Guide to ADG. 29
Overview of ADG . 30
Invoking ADG . 30
Specifying the Inputs . 30

Specifying the Language being Processed. 30
Specifying the Initialization File. 30
Specifying the Outputs. 30
Specifying the Target. 31
Specifying the Dependency Filenames . 31
Ignoring Errors . 31
Ignoring System Include Files . 31
Examples . 31

Typical ADG Usage. 32
Writing ADG Initialization Files . 32
Updating Your makefile to Use ADG for Dependency Maintenance 33
Rule Writing . 35
ADG Options. 37

4 Dimensions CM

Table of Contents

Dimensions CM Make Guide 5

Chapter 1
Guide to OpenText™ Dimensions CM
Make

Overview of Dimensions CM Make 6
Online Examples 8
Setting Up MCX_LISTEN for Multi-Homed Servers 8
Dimensions CM Make Terminology 8
Invoking Dimensions CM Make 9
Integrating with Dimensions CM Versioning 10
Building Object Libraries and Other Containers 22
Building Double Colon Targets 23
Options Summary 24
Improving Dimensions CM Make Efficiency 26
Behavior of Dimensions CM Make Under Windows 27
Comparing Behavior of Dimensions CM Make to GNU Make 27
Limitations in NMAKE Compatibility 28

6 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

Overview of Dimensions CM Make

A Dimensions CM product can have a physical representation in the form of a directory
structure. Dimensions CM Make provides a mechanism for building configurations against
the directory structure by way of Makefiles and offers a close integration of the
Dimensions CM product's version management capabilities with the Make capability. This
mechanism facilitates full version control and audit trails for the target files created by the
build process and also embeds the necessary intelligence to determine whether a target
file is out of date and therefore if it must be rebuilt.

The Dimensions CM Make approach is mainly intended for use in development
environments where the use of Makefiles is standard practice. The migration time for
these environments to Dimensions CM is minimized by virtue of the Dimensions CM Make
facility.

This manual describes the additional functionality provided by Dimensions CM Make
compared to GNU Make. For information on GNU Make, see the GNU Make User Guide.

Dimensions CM Make Processes
Dimensions CM Make comprises two cooperating processes:

 A 'make client' executable, which performs the make processing. There are two 'make
clients': dm_make (UNIX and Windows) and dm_nmake (Windows only). dm_nmake
provides NMAKE compatibility.

 An agent process, which performs the Dimensions CM-related processing on behalf of
the dm_nmake.

Dimensions CM Make Architecture
The following diagram illustrates the architecture of Dimensions CM Make:

IMPORTANT! The current version of Dimensions CM Make does not support
Dimensions CM streams. All references to Dimensions CM projects (for example, in the
section "Integrating with Dimensions CM Versioning" on page 10) mean precisely the
term "project" and do not encompass Dimensions CM streams.

Overview of Dimensions CM Make

Dimensions CM Make Guide 7

The 'make client' executables are derivatives of GNU Make and are therefore upward
compatible with the make described in Section 6.2 of "IEEE Standard 1003.2-1992"
(POSIX.2).

To use Dimensions CM Make, you need to write a makefile. This is a file that describes
the relationships between files in your product and the commands needed to update each
file.

Using some features of Dimensions CM Make requires an additional file called a
pcmsfile. This file contains rules for searching the Dimensions CM database and rules for
preserving files made using Dimensions CM Make in the Dimensions CM database. A
separate file is used for two reasons.

 Existing makefiles can be used unmodified. This simplifies integration of
subcontracted software.

 The same makefile can be used for any configuration with the same physical
structure.

Dimensions CM Make references both the files currently on disk and their corresponding
versions in the Dimensions CM database when deciding what files need to be remade. This
enables:

 Automatic get of outdated source files.

 Automatic get of files made by Dimensions CM Make and preserved in the
Dimensions CM database.

8 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

Online Examples
If your Dimensions CM administrator chose the "Intermediate" (previously also called
"Advanced" or "Payroll Sample") process model/workflow option when installing
Dimensions CM, you have access to a demonstration Dimensions CM product called
payroll. If you access this product, your default project is payroll.

Change to the project PAYROLL:PRJ_BUILD, which contains example files for dm_make.

Setting Up MCX_LISTEN for Multi-Homed Servers
See the Installation Guide for Windows or Installation Guide for UNIX for details.

Dimensions CM Make Terminology
The following expressions are commonly used throughout the rest of this guide.

NOTE payroll is a demonstration Dimensions CM product intended to show the
Dimensions CM features and functionality with respect to a high degree of control and
process in a regulatory environment. In addition to the Dimensions CM Make features,
the payroll product includes a design part breakdown structure, various requests, and
items for which baselines have been created.

target A file which is to be made by Dimensions CM Make, or one
which was previously made by Dimensions CM Make. This is
the file substituted for the automatic make variable $@.

dependency A file upon which a target depends. A dependency may itself
be a target.

primary dependency The first dependency listed in the makefile. This is the
dependency substituted for the automatic variable $<.

controlled Describes a file that is under Dimensions CM control.
Dimensions CM Make considers a file to be controlled if it can
map the path of the file to the project path of an item.

source Describes a controlled file that has not been made by
Dimensions CM Make.

stable Describes a controlled file when Dimensions CM Make can
match the file on disk to an item revision in Dimensions CM.

unstable Describes a controlled file when Dimensions CM Make cannot
match the file on disk to an item revision in Dimensions CM. A
file can be considered unstable for several reasons:

 The file on disk maps to a checked out item revision

 The file on disk is writable

 The file on disk is not writable, but no Item Revision can
be found with the same file length and revised date or
checksum.

Invoking Dimensions CM Make

Dimensions CM Make Guide 9

Invoking Dimensions CM Make
Dimensions CM Make is invoked by entering the command:

dm_make [options]

The options can include all those accepted by GNU Make as well as Dimensions CM Make
specific options. All Dimensions CM Make specific options are multilateral. Their use is
described where relevant and summarized on "Options Summary" on page 24.

Dimensions CM Make comprises the following cooperating processes:

 The make client executable, which performs the make processing.

 An agent process, which performs the Dimensions CM-related processing on behalf of
the dm_make executable.

This division does not affect the way Dimensions CM Make is used, but does affect
diagnostic output. Messages from the make client executable are prefixed with the
executable name (for example, pcmsmake), while those from the agent process are
prefixed with the string:

Dimensions CM Make Agent:

When Dimensions CM Make is invoked, it attempts to start an agent process unless the
--no-configuration-management option is specified. This option is useful when you
are debugging makefiles.

The agent process then attempts to connect to a Dimensions CM database, which can be
specified in one of the following ways:

 Using the --database=connection_description command line option.

The form of the connection_description depends on the underlying database
being used by Dimensions CM.

 Using the base database symbol.

The form of this symbol's value depends on the underlying database being used by
Dimensions CM.

uncontrolled Describes a file that is not under Dimensions CM control.
Dimensions CM Make considers a file to be uncontrolled if it
cannot map the path of the file to the project path of an item.

preserved Used to describe a target that has been put into the
Dimensions CM database, creating a new Dimensions CM
Item Revision.

Configuration
Search Path

A sequence of one or more projects, release baselines or
releases that are to be searched for files.

CSP An abbreviation for Configuration Search Path.
current project A project determined automatically by Dimensions CM Make

when it is invoked. The current project is prepended to each
Configuration Search Path and is the project in which all
preserved targets are placed.

10 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

The --database option takes precedence if it is specified. If more than one --database
option is specified, the last one on the command line is used.

If the base database symbol is not set, and a --database option is not found,
Dimensions CM Make runs without reference to any Dimensions CM database, basing its
actions solely on the files present on disk.

If the attempt to connect fails, Dimensions CM Make terminates, unless the
--keep-going option has been specified.

Integrating with Dimensions CM Versioning
Dimensions CM Make uses a mechanism called a Configuration Search Path (CSP) to
determine how to search the Dimensions CM database for files and where to put the files
it has made. A CSP is a sequence of one or more projects. Dimensions CM Make obtains
CSPs from the following sources:

 The current project.

 The --configuration-path option.

 The pcmsfile.

Dimensions CM Make uses the project directory and project filename of a file as the keys
when searching a CSP. The Global Project ($GENERIC:$GLOBAL) allows different items to
have the same project directory and project filename. It is the only project in
Dimensions CM that allows this. Consequently, the Global Project cannot be used in a
Configuration Search Path. Dimensions CM Make issues a warning whenever it encounters
the Global Project in a CSP.

The Current Project
In Dimensions CM, every user can specify a default working directory for each project.
This is done using the Dimensions CM Set Current Project (SCWS) operation without the
/NODEFAULT option. Dimensions CM uses this directory when getting, checking out, and
checking in files within a project.

Dimensions CM Make also makes use of the default working directory associated with
each project. When you run Dimensions CM Make, the agent process attempts to
determine the current project from its starting directory unless the project --workset
and/or the --workset-root options have been specified. (This is either the current
working directory or the directory resulting from any GNU Make --directory command-

NOTE Dimensions CM 10.1.2 and later: dm_make uses metadata to determine the
stability or otherwise of inputs to a build. To revert to pre-10.1.2 functionality, you need
to explicitly add "DM_MKAGENT_NO_METADATA <any-value>" to the Dimensions CM
server dm.cfg configuration file.

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 11

line options.) It does this by matching the starting directory against the project default
directories recorded for the current user in the Dimensions CM database.

Dimensions CM Make matches the project or projects with a default directory that is the
longest prefix of the starting directory.

If no project can be matched, Dimensions CM Make does not set the current project, and
a warning is issued.

If more than one project can be matched to the starting directory, Dimensions CM Make
selects the default project if it is one of those matched. The default project is the project
specified in the most recent SCWS operation without a /NODEFAULT option. Dimensions CM
Make issues a warning if it has to do this. If none of the projects matched the default
project, Dimensions CM Make does not set the current project and issues a warning.

If the current project can be determined, a confirmation message is given.

Dimensions CM Make uses the relative path from the default directory of the current
project to the starting directory to map relative paths used in the makefile to project
paths. If the current project cannot be determined a one-to-one mapping between
relative paths used in the makefile and project paths is used.

The current project is always used as the destination project when preserving files made
by Dimensions CM Make. If it cannot be determined, no files can be preserved. It is also
always the first project searched when looking for files, regardless of the content of the
pcmsfile or the value specified for the --configuration-path option.

You can override this behavior using the project options:

 --work-set=work-set-spec and

 --work-set-root=directory.

If you do this, the starting directory must be a descendent of the specified root. If you use
the --work-set option but not the --work-set-directory option, the starting
directory is mapped to the project root. If you use the option --work-set-directory
but not the option --work-set, the current user's default project is used as the current
project.

CAUTION!

The absolute path of the starting directory is used to perform the match. If a relative
path or, on UNIX platforms, one containing symbolic links, is specified when the SCWS
operation is performed, the corresponding database record is ignored. To ensure that this
does not happen, change directory to your intended project default directory and specify
the operating-system directory in the SCWS command.

On Windows, you need to explicitly specify the operating-system directory to do this, for
example:

dmcli scws PAYROLL:WS_MAKE /dir="c:\temp\make"

On UNIX, you can use the pwd command to set the operating system directory, for
example:

dmcli scws PAYROLL:WS_MAKE /dir=\"`pwd`\"

in Bourne shell or C shell.

12 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

The --configuration-path Option
The --work-set option is used to specify a fallback CSP. This CSP is used for two
purposes:

 When Dimensions CM Make is invoked, this CSP is searched for a pcmsfile if the
current project could not be determined or no pcmsfile could be found in the current
project.

 After any pcmsfile is processed, this CSP is searched for any file that cannot be
found in the current project or the CSPs specified in the pcmsfile.

The syntax of configuration_search_path is a sequence of one or more project
specifications, separated by vertical bar (|) characters. Normal Dimensions CM quoting
rules apply to the specifications (see the related document Command-Line Reference for
details), with the addition that project specifications containing a vertical bar must also be
quoted, for example:

--configuration-path='PROD1:FIX1 | "PROD1:SYSTEM SOURCE"'

The single-quotation characters (') protect the vertical bar and double-quotation
characters (") from interpretation by the shell. No double-quotation characters are
required around PROD1:FIX1 because it does not contain either the space character or
the vertical bar.

Problems with --configuration-path Option

Dimensions CM Make uses a one-to-one mapping between relative path and project path
if there is no current project.

Consider a makefile that employs recursive makes in other directories, for example,

some_target:
cd_directory
$(MAKE)

If the configuration_search_path option is used, both the parent and child makes
map their starting directory to the project default directory of the project(s) specified in
the option, if no current project can be determined. This is unlikely to give the desired
results.

We recommend not to use the --configuration-path option in these circumstances.

The pcmsfile
The pcmsfile contains rules that tell Dimensions CM Make where to search for source
and target files and what values to use when preserving targets. These rules have a
format similar to the rules in a makefile:

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 13

pattern [pattern ...] : [pattern ...]
directive
...

The pattern line must not begin with whitespace. Directive lines must start with
whitespace. This is consistent with makefile syntax.

Unlike a makefile, there must be at least one directive. The patterns are GNU Make style
stem patterns.

Rules are matched by comparing the target file with the left-hand side pattern(s) and the
primary dependency with the right hand side pattern(s), if specified. The rule is selected if
there is a match. Once a rule has matched, the automatic variable $@ may be used to
refer to the target file in directives and the automatic variable $< may be used to refer to
the primary dependency. The right-hand pattern match is only done when building the
preservation rule base—it is not done when building the CSP.

For example, the following rule tells Dimensions CM Make to search for object files in
Project "PROD1:RELEASED C OBJECTS" and to preserve object files made from C source
files using item type OBJ and format SUNOBJ:

%.o: %.c
configuration "PROD1:RELEASED C OBJECTS"
preserve $TYPE = OBJ \

$FORMAT = "SUNOBJ"

Long lines may be broken by making the last character on the line a '–' or '\'. Line
joining is done before all other processing.

The '\' character can be used to remove the special meaning of the next character. A
'\' can be written as '\\', but this is only necessary when the next character is a special
character that is to retain its meaning. The special characters are '!', '#', '–', '\',
and '%' (refer also to the GNU Make User Guide).

Either the '#' or '!' character can be used to start a comment. Unlike a makefile, the
'\' character can be used to quote the comment character. The comment character and
the remainder of the line are ignored. Because line joining is done before comment
processing, you can use escaped new lines in comment lines too.

Naming pcmsfiles

The name of the pcmsfile can be specified through the --pcms-file=<filename>
option. If this option is not used, Dimensions CM Make looks for a file named pcmsfile in
its starting directory. If a file is not found, it repeats the search using the name Pcmsfile,
if the operating system supports mixed case names. If neither file is found, the search is
repeated in the directory that corresponds to the project default directory of the current
project. Paths in pcmsfiles found by the default search mechanism are always
interpreted relative to the project root. Paths in pcmsfiles specified with the
--pcms-file option are interpreted relative to the Dimensions CM Make starting
directory.

Specifying CSPs in the pcmsfile

CSPs are specified in the pcmsfile using the configuration directive:

configuration configuration_search_path

14 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

This directive sets up a configuration path that is used for files that match the target
pattern of the rule. If more than one rule containing a configuration directive matches, the
CSPs are traversed independently in the order in which they appear in the pcmsfile.

The target patterns should include the pattern %/ if you want the CSP to be searched for
directories.

The syntax of configuration_search_path is as follows:

disable-current-search = '-'
explicit-current-search = '.'
meta-element = disable-current-search | explicit-current-search
enable-global-search = '*'
disable-global-search = '!'
work-set-specifier = 'work-set' | 'ws'
baseline-specifier = 'baseline' | 'bl'
release-specifier = 'release' | 'rl'
object-class-specifier = work-set-specifier |

baseline-specifier |
release-specifier

object-specification = product-id ':' object-id
csp-element = [object-class-specifier] object-specification
csp = { csp-element | meta-element }

[{ '|' { csp-element | explicit-current-search } } ...]
[{ enable-global-search | disable-global-search }]

If the optional object-class-specifier is omitted, Dimensions CM Make behaves as if
a work-set-specifier had been entered. This is essential to maintain upward
compatibility with existing CSPs.

Dimensions CM Make searches for an object of the class and with the specification entered
in the repository. If a matching object is found, the CSP element maps to that object.

Normal Dimensions CM quoting rules apply to the specifications (see Command-Line
Reference for details), with the addition that project specifications containing a vertical
bar must also be quoted, for example:

../src/%.c :
configuration "prod:work set one" |\

"prod:contains|bar"

This directive is very useful. For example, you can use different CSPs for source and
object files, allowing a single portable source code configuration to be used with any
number of architecture dependent object code configurations, for example:

%.o :
configuration "fs:rudder fix 1" |\
"fs:release 4 mc88000 fs objects"

%.cxx :
configuration "fs:rudder fix 1" |\
"fs:release 4 source"

The meta-elements are used to control when the current project is searched. Disable-
current-search defers searching the current project until after all subsequent matching
CSPs, including the fallback CSP, are processed. It can only be specified as the initial
element of a CSP. The current project is still searched to ensure the project file
namespace is complete. Explicit-current-search specifies where the current project
is searched in a matching CSP. Specifying explicit-current-search after disable-
current-search in a CSP overrides the disable-current-search behavior.

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 15

Until a matching CSP containing a meta-element is encountered, an implicit search of the
current project is performed before the other elements in matching CSPs are processed.
This maintains upward compatibility with existing CSPs. Consequently, disable-
current-search is best used as either the first element in the fallback CSP or as the first
element in a match-all configuration directive specified as the first configuration directive
in the pcmsfile.

The enable- and disable-global-search elements, when enabled Dimensions CM
Make perform a global project search after performing the fallback CSP and any deferred
current project searches.

Searching Baselines and Releases

If an element in a CSP is a baseline, Dimensions CM Make agent exhibits the following
behavior:

 It attempts to match the path requested by the Dimensions CM Make client against
the path structure stored in the baseline.

 If no match is found, Dimensions CM Make exhibits the same behavior as it does
when no match is found in a project.

 If a match is found, Dimensions CM Make updates the file as necessary in the same
fashion as is done for updates with respect to a project. This means that built files
recorded in the baseline are subject to the same reuse checks as they would be if they
had been located in a project.

If an element in a CSP is a release, Dimensions CM Make maps the element to the
baseline used to create the release and thereafter behaves as if that baseline had been
specified as the CSP element.

Preserving Targets as Items

You can tell Dimensions CM Make to preserve targets it has made in the Dimensions CM
database by using preserve directives in the pcmsfile to set up preservation data.
Preserving the target either creates or updates a Dimensions CM item.

The --no preserve option can be used to direct Dimensions CM Make to omit any target
preservation it would otherwise have performed. The --preserve option can be used to
specify that some files are to be preserved as well as built files.

Dimensions CM Make permits preservation of a target only if the following apply:

 The pcmsfile being used is a stable, controlled file. If you want to preserve an
unstable or uncontrolled pcmsfile as part of a build, ensure that it contains rules to
preserve itself and use the --preserve option with the appropriate preservation
class(es). This preserves the pcmsfile before any other targets are preserved.

 The makefiles used are reproducible. The makefile for the make instance you state
from the command line must be a controlled and stable file. Any other makefile that
is statically defined must be a controlled stable file. Dynamically generated
makefiles (such as ADG output files) are considered reproducible if the makefile
containing the rule used to build the file is a controlled, stable file. These criteria are
applied recursively, so any makefiles built from such a dynamically built makefile
are also considered reproducible.

 All other dependencies that are controlled files are also stable.

16 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

It is possible that some or all of the dependencies may be uncontrolled files.
Dimensions CM Make still preserves the target in this case as long as the conditions above
hold true.

The preserve directive has the following syntax:

preserve assignment [assignment ...]

Each assignment is of the form:

variable = value

The variable is either the variable name of a user defined attribute or one of the
following item-related system-defined attributes:

$PRODUCT_ID $ITEM_ID $VARIANT $TYPE
$FORMAT $STATUS $OWNING_PART_ID
$OWNING_PART_VARIANT $OWNING_PART_PCS

The attributes (part-id, variant and PCS) of the design part by which the item is owned
are referred to here as $OWNING_PART_ID, $OWNING_PART_VARIANT, and
$OWNING_PART_PCS respectively.

The value is a string specifying the value that should be assigned. When assigning values
to user-defined attributes, the same syntax as the Dimensions CM command line is used
to handle special characters and multi-valued attributes (see Command-Line Reference
for details).

Existing attribute values can be substituted into these assignments using the following
syntax:

$(variable file)

The file must be $@ or $<. The variable is the variable name of a user-defined
attribute or one of the system-defined attribute variables given above. If the file refers
to an uncontrolled file or the attribute value is undefined, an empty string is substituted.

If $@ is specified, the value is taken from the most recent revision of the item
corresponding to the target in the configuration.

The minimum set of attributes that must be provided in order to preserve a target by
creating an item are shown in the following table. Dimensions CM Make calculates
appropriate default values for all of these attributes except $ITEM_TYPE, which must
always be specified.

NOTE Unlike the configuration directive (which searches the various CSPs in order and
independently) assignments in all matching preserve directives are merged. The merge
order is given by the order of the rules in the pcmsfile. This makes it easy to write
general preservation directives and then override specific values for certain groups of
files.

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 17

Variable
Create/
Update/
Check In

Notes

$PRODUCT_ID Create If there is a primary dependency and it is an item,
then $($PRODUCT_ID $<) is used. If this is not the
case, the product that owns the current project is
used.

$ITEM_ID Create If automatic ID generation is enabled for the item
type being used to preserve the target, this variable
is silently ignored.

The default value is based on the target filename as
follows:

All non-alphanumeric characters are replaced by
spaces. The resulting string is truncated to 25
characters if necessary. Trailing spaces are removed.

Earlier releases of Dimensions CM Make used
$($ITEM_ID $<) as the default. To retain this
functionality, add the following rule to your
pcmsfile. This rule should precede all other
preserve directives that specify $ITEM_ID:

%:
preserve $ITEM_ID = $($ITEM_ID $<)

$VARIANT Create If there is a primary dependency and it is an Item,
then $($VARIANT $<) is used. If this is not the case,
the variant of the owning part is used.

$TYPE Create This must be specified. There is no default value.

$FORMAT Create If unspecified, the suffix of the target filename is
used. If the target filename does not have a suffix,
an error occurs.

$OWNING_
PART_VARIANT

Create If there is a primary dependency and it is an Item,
then $($OWNING_PART_ID $<) is used. If this is not
the case, the root part of the owning product selected
above is used.

$OWNING_
PART_VARIANT

Create If there is a primary dependency and it is an Item,
then $($OWNING_PART_VARIANT $<) is used. If this
is not the case, the variant is that of the owning part
selected above is used. If that part has more than
one variant, an error occurs.

If a variant is specified, but the owning part does not
have such a variant, an error occurs.

$LIB_FILENAME Create Dimensions CM Make automatically generates a value
for this variable, based on $WSPATH if it is not
specified.

18 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

Other item related inherent attributes may be used as values in assignments. Their values
may not be changed through preserve directives. These are listed in the following table.

For example, consider a situation where all object files should be preserved with a
common item type and format and be owned by the same design part as their primary
dependency, except for object files in the directory lib/. These object files should be
owned by the design part "CUSTOM LIBRARY.SUN" in the same product as the primary
dependency.

The following rules accomplish this:

%.o :
preserve $TYPE = OBJ $FORMAT = SUNOBJ \

lib/%.o :
preserve $OWNING_PART_ID = "CUSTOM LIBRARY" \

$OWNING_PART_VARIANT = SUN

Because the assignments in all matching rules are merged, the actual values used for
lib/%.o would be:

$TYPE = OBJ
$FORMAT = SUNOBJ
$OWNING_PART_ID = "CUSTOM LIBRARY"
$OWNING_PART_VARIANT = SUN

All other object files would use the values:

$STATUS Create
Update
Check In

The initial lifecycle state is used if no value is
specified.

$COMMENT Create
Update
Check in

A comment stating that the item revision was
created, updated or checked in by Dimensions CM
Make is used if no comment is specified.

$DESCRIPTION Check In A description stating that the item revision was
created by Dimensions CM Make is used if no
description is specified.

Variable
Create/
Update/
Check in

Notes

$REVISION The item revision.

$OWNING_
PART_VARIANT

The PCS of the owning design part.

$WSPATH This is the path relative to the project root. The value
can only be used in specifying other values. It cannot
be changed via a preserve directive.

$DIRPATH This is the directory part of $WSPATH.

$FILENAME This is the filename part of $WSPATH.

Variable
Create/
Update/
Check In

Notes

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 19

$TYPE = OBJ
$FORMAT = SUNOBJ
$OWNING_PART_ID = $($OWNING_PART_ID $<)
$OWNING_PART_VARIANT = $($OWNING_PART_VARIANT $<)

Obsolete Gotten Files May Appear Unstable

If an item is gotten at its initial lifecycle state and subsequently overwritten in
Dimensions CM because the item type permits overwrite at the initial lifecycle state,
Dimensions CM Make cannot recognize the file. Any such file is treated as an unstable
(locally modified) file. If the --no-clobber option has been used, the file is not updated
and no target built using the file as an input can be preserved as an item.

A warning message is generated when such a file is encountered, so that the condition
may be detected.

This restriction does not apply to items that are inputs to targets preserved as items by
Dimensions CM Make, including makefiles and pcmsfiles. The Dimensions CM core
system prevents such items from being overwritten.

Recommendation Item types used by items that are subject to this restriction should not allow over-writing
at the initial lifecycle state. This is accomplished by setting the appropriate flag option for
item types in the Administration Console.

Item Header Substitutions Can Cause Gotten Files To Appear Unstable

If --no-clobber is not used and an item revision contains substitution variables that can
take different values for the same library file version, Dimensions CM Make may fail to
recognize any gotten file corresponding to the item revision. Similarly, changes to these
substitutions after the file has been gotten may not cause an update on rebuild. This
second problem is independent of the --no-clobber option.

The following substitutions can be used safely:

The following substitutions can cause Dimensions CM Make to consider a file unstable:

%PP% Product ID

%PI% Item ID

%PV% Item variant

%PT% Item type

%PR% Item revision

%PID% Item specification

%PF% Item revision format

%PIV% Item revision file version

%PM% Project filename

%PL% Item history

%PLA% Item history including action history

%PRT% Date of last change

%PO% Owner

20 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

Recommendation Do not use these substitutions in item revisions that are to be used with Dimensions CM
Make.

Workaround Use the --no-expand option during product development to avoid files appearing
unstable due to changes in item header substitution values.

Toggling Item Header Substitution Can Cause Gotten Files To Appear
Unstable

Changing the item header substitution flag for an item type in the Administration Console
may prevent Dimensions CM Make from recognizing files corresponding to items of that
type that were gotten before the change.

Recommendation Once item header substitution has been enabled for an item type, it should never be
disabled. If the unexpanded version of an item revision is required, a Get Item operation
with the /NOEXPAND qualifier should be used.

Possible Problems When Preserving Files
Some compilation tools require write-access to the inputs. For example, BSCMAKE (a
Windows development tool) requires write-access to the .SBR files it reads in order to
truncate them after processing. If Dimensions CM Make has preserved these inputs, they
are not writable.

Workaround Perform one of the following.

 Do not preserve these files.

 Modify the rules to make the input files writable before the command is invoked. In
the case of .SBR files, it is recommended that they are not preserved as they are
transient files used by BSCMAKE when building a source browser database.

Specifying Target Reuse
The network administration cluster in the Administration Console can be used to define a
Resident Software definition (RSD) and associate it with nodes across that it is intended to
reuse targets built by Dimensions CM Make.

%PS% Status

%PIRC% Related requests

%PIRP% Related design Parts

%PIRB% Related baselines

%PIRW% Related projects

%PIRIT% Items related to item as parents

%PIRIF% Items related to item as children

%PIATF% Expand the failure entries in the audit trail for an item revision.

%PIATS% Expand the success entries in the audit trail for an item revision.

%VARIABLE% Any user-defined attributes

Integrating with Dimensions CM Versioning

Dimensions CM Make Guide 21

If existing targets built by Dimensions CM Make are not to be reused after the
introduction of RSDs, they must be marked with a native RSD for the node on which they
were built before associating the real RSD with the node. The procedure to accomplish
this is given below.

If Dimensions CM Make cannot find an RSD for the node on which it is invoked, it issues
the diagnostic:

Warning: No Resident Software Definition found for node (<node-name>)

where (<node-name>) is the name of the node on which Dimensions CM Make is
being invoked. In this case, any files preserved in the Dimensions CM database are
considered to be native to the node on which Dimensions CM Make was invoked. They
are reusable only on that node.

If Dimensions CM Make can find an RSD for the node on which it is invoked, it searches
the Dimensions CM database for any existing native targets for the node and marks them
as compatible with the RSD.

If the introduction of the RSD coincides with an incompatible change in the resident
software, this behavior causes potentially incompatible files to be reused. Use the
following procedure to avoid the problem:

1 Create a native RSD for the node and associate it with the node.

2 If the node is a UNIX system, log in to that node and enter the command:

dm_make -n -f /dev/null

3 If the node is a PC, log in to that node and enter the command:

dm_make -n -f nul

Existing native files are now marked with the native RSD. Once this has been done,
associate the real RSD with the node. Subsequent invocations of Dimensions CM Make do
not reuse the files marked with the native RSD.

There is a limitation on the reuse of uncontrolled files. These must have the same
absolute path on all nodes where it is intended to reuse them.

Automatic Dependency Generation
Dimensions CM Make supports dynamic dependency generation through its capability to
rebuild its own input files coupled with a dependency generation utility called adg. To
employ dynamic dependency generation, you first add include statements to your
makefile for dependency files related to the targets you want to make. For example:

OBJS = object1.o object2.o
We want the dependencies for these to be
generated dynamically

prog: $(OBJS)
linkprog $(OBJS)

include $(OBJS:.o=.dep) # This line includes the dependencies

This causes Dimensions CM Make to try and include the files object1.dep and
object2.dep. You can then add a rule to rebuild these files, say:

22 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

%.dep: %.c
adg --language=C –output=$@ -- $(CFLAGS) -- $<

This causes the adg utility to run for the C language, interpreting the options supplied
between the two -- options as C compiler options. The advantage of using adg rather
than a compiler option is that adg is not compiler-dependent. The adg utility is described
in "Guide to ADG" on page 29.

Building Object Libraries and Other Containers
Dimensions CM Make must be informed if the target to be built is some type of container.
This is necessary because different update and preservation strategies are required for
these targets. You inform Dimensions CM Make that a target is a container in two ways as
follows.

 Use library notation in your makefile. The container must be an object library in this
case, for example:

libtarget.a: libtarget.a(blue.o red.o gold.o)
ranlib $@

 Use the "container" directive in your pcmsfile, for example:

%.a:
container

In this case, the container can be any type of file that contains elements that can be
individually updated, for example:

container: element1 element2 element3
update_container $@ $?

This method supports the traditional approach to maintaining object libraries, for
example:

libtarget.a blue.o red.o gold.o
ar rv $@ $?
ranlib $@

Each approach has its advantages. If you are using library notation, there is no need to
explicitly create the object files as targets. They can instead be inferred as intermediate
dependencies, for example:

No need for explicit library indexing on this system
RANLIB = true

libtarget.a: libtarget.a(blue.o red.o gold.o)
$(RANLIB) $@

Do not put in dependencies between the object files and their
sources. This causes them to be inferred as intermediate

NOTE A command is required for the target to be preserved as an item, even on
systems where object library indices are maintained on each update. If you are using
such a system, the simplest solution is to use "true" as a dummy command.

Building Double Colon Targets

Dimensions CM Make Guide 23

targets required to build the library used. The object files
are automatically deleted when Dimensions Make terminates.
They are rebuilt only when the corresponding library
member needs updating.

blue.o: blue.h target.h
red.o: red.h target.h
gold.o: gold.h target.h

You can still use your own object file suffix (or stem pattern)
rule if you like. It is selected by implicit rule search
when the object files are # inferred.

.c.o:
$(CC) $(CDEBUG_FLAGS) $(CPP_FLAGS) $(CARCH_FLAGS) -c $<

You can also use the standard POSIX approach of having a .c.a
suffix rule. Note that you are responsible for deleting the object
file in this case.

.c.a:
$(CC) $(CDEBUG_FLAGS) $(CPP_FLAGS) $(CARCH_FLAGS) -c $<
ar rv $@ $*.o
rm -f $*.o

The advantage of this approach is that the object files are not retained, which can result in
a considerable reduction in disk space requirements. The POSIX style approach is most
efficient in terms of disk space requirements, as the object files are deleted as they are
added to the library. The intermediate target approach does not remove the object files
until Dimensions CM Make terminates, so the transient disk space requirement may be
high.

The disadvantage of library notation is that the library must be rewritten each time a
member is updated. This can be time consuming, especially with large libraries.

The converse is true with the traditional approach to library maintenance. The object files
must be explicit targets in this case, so the disk space requirements are high. The
advantage is that the library is updated in a single operation, which saves considerable
time, especially with large libraries.

If you use the traditional approach and preserve the library in Dimensions CM, you should
also preserve the object files. This is not essential, but is advised to avoid unnecessary
rebuilds should the object files be deleted or another build area be used.

Building Double Colon Targets
Dimensions CM Make does not preserve double colon targets with no dependencies. These
targets must be rebuilt whenever Dimensions CM Make is invoked, so preserving them
would be inappropriate.

"Double colon" targets with dependency lists are preserved. Dimensions CM Make
combines all the dependency lists into a single dependency list and concatenates the rules
in the order they appear in the makefile to form a single process. This approach is used on
the assumption that evaluating the rules with some set of dependencies and no target file

24 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

present has the same result as performing some subset of the rules with any previously
built target file present. If you use a double colon target that does not conform to this
assumption, it should not be preserved in Dimensions CM.

Options Summary
Dimensions CM Make extends the options understood by GNU Make with the following.

--no-configuration-management
--no-cm
--no-pcms

Do not attempt to start the agent process and connect to Dimensions CM. This
option is useful for debugging makefiles and enables Dimensions CM Make to
be used as an ordinary make. The --xml-bom option also implies the --no-cm
option.

--database=connection_description
--db=connection_description
--pcmsdb=connection_description

Connect to the Dimensions CM database specified by
connection_description. If more than one of these options is specified, the
last one on the command line is used. The form of connection_description
depends on the underlying database being used by Dimensions CM.

--configuration-path=configuration_search_path
--csp=configuration_search_path

Use configuration_search_path as the fallback CSP. If more than one of
these options is specified, they are concatenated in the order in which they
appear on the command line.

The syntax of configuration_search_path is a sequence of one or more
project specifications, separated by vertical bar (|) characters. Normal
Dimensions CM quoting rules apply to the specifications (see the Command-
Line Reference for details), with the addition that project specifications
containing a vertical bar must also be quoted.

--no-preserve
--no-save

Do not preserve any targets in the Dimensions CM database.

--work-set=<work-set-specification>
--ws=<work-set-specification>

Use the project specified as the current project. If this option is used and
--work-set-root=<directory> is not used, the starting directory is mapped
to the project root.

--work-set-root=<directory>

NOTE Type "dm_make –v" if you wish to check which version of Dimensions CM Make
you are running and the version of GNU Make it was derived from; and type dm_make -h
and/or refer to the GNU Make User Guide if you require information on the standard GNU
Make options that are accepted by Dimensions CM Make.

Options Summary

Dimensions CM Make Guide 25

--ws-root=<directory>

Map the directory specified to the project root. The directory must be an
ancestor of the starting directory, or the starting directory itself. A relative path
may be used and is interpreted relative to the starting directory. If this option
is used and --work-set=<project-specification> is not used, the current
user's default project is used as the current project.

--pcms-file=<file-path>
--pf=<file-path>

Use the specified file as the configuration rule file. If more than one such
option is used, the files are read in sequence.

--preserve[=<class-list>]
--save[=<class-list>]

Preserve the specified classes of target in Dimensions CM. The <class-list>
is a comma-separated list comprising one or more of the following values:

If no <class-list> list is specified, the default is 'built'. If a <class-list> is
specified, it must include all classes to be preserved.

If this option is specified, it overrides any --no-preserve option.

--no-expand

Do not expand items when they are gotten.

--verbose

Provides verbose output from the Dimensions CM Make agent.

--no-clobber

Do not overwrite read-only unstable files. By default, Dimensions CM Make
overwrites such files.

--no-dualsum

Disables matching on both the text and binary lengthsum data when using
Dimensions CM Make on Windows.

--xml-bom[=<bom-file>]

Causes a Dimensions Build compatible XML bill-of-materials (BOM) to be
created. Specifying this option for dm_make, dmnmake, or adg implies the use
of the --no-cm option, that is, only files on disk are considered and no
communication with the Dimensions CM server occurs. In this mode, the
Dimensions CM database is not accessed directly by Dimensions CM Make,
instead Dimensions Build is responsible for populating the build area before
the build and for collecting build outputs once the build is complete.

The default value for <bom-file> is bom.xml.

built Targets built by Dimensions CM Make

extracted Checked out files

unstable Unstable source files

uncontrolled Uncontrolled source files

26 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

"Sub-makes" update their parent’s BOM, that is, there is a single BOM for each
"top-level" dm_make invocation.

Improving Dimensions CM Make Efficiency
When dm_make searches for a file, it passes a request to the agent process that may
cause a Dimensions CM database search to be performed. The efficiency of
Dimensions CM Make can therefore be improved by:

 Reducing the number of Dimensions CM database searches.

 Reducing the length of each Dimensions CM database search.

The number of database searches can be reduced by reducing the number of implicit rule
searches done by dm_make. This can be done in the makefile as follows.

 Using the .PHONY special target

The .PHONY special target should be used to explicitly state which targets do not
correspond to real files. This prevents an implicit rule search for their dependencies.

 Limiting the number of extensions

The .SUFFIXES special target can be used to reduce the number of implicit rules that
is searched. This is done as follows:

.SUFFIXES: # Clear the suffix list

.SUFFIXES: .o .c .h # Set the suffix list

After this has been done, only implicit rules involving the suffixes in the list are
searched.

 Always explicitly stating dependencies

For example, if you are making an executable and your object files are built from C
sources, put in an explicit dependency between each object file and the C source file,
rather than leaving Dimensions CM Make to infer it.

 Disabling implicit rule searching

Implicit rule searching can be disabled by using the --no-builtin-rules option. If
this is done, replacements for any implicit rules that the makefile uses must be
written. Two things can make this task easier:

• Use the --print-data-base option to obtain the text of the built in rules that
would normally be searched

• Use the include directive so that the rules can be maintained in a separate
makefile.

The length of each Dimensions CM database search can be reduced by making sure that
Configuration Search Paths are kept as short as possible. This is most easily accomplished
by minimizing the number of projects from which files are to be obtained. In practice,
most tasks can be accomplished with no more than four projects in any CSP as listed
below.

 A target project, where all targets are to be preserved. This must be the current
project because that is the only place preservation can take place.

 A source project for any changes being worked on.

Behavior of Dimensions CM Make Under Windows

Dimensions CM Make Guide 27

 A project containing preserved targets for the system against which any changes are
being made.

 A project containing the source for the system against which any changes are being
made.

Behavior of Dimensions CM Make Under Windows
 All diagnostics are written to standard output

Because of the limited capabilities for output redirection in Windows, all information,
error and warning messages from Dimensions CM Make are written to the standard
output stream. This differs from the behavior on UNIX, where errors are written to the
standard error stream.

 Pathnames in makefiles and projects

Within a makefile, either / (forward slash) or \ (backslash) can be used as the
separator in a path. Comparisons with project pathnames are case insensitive.

 Paths in configuration files

Rule matching in the configuration file is case insensitive.

 Command interpreter selection

The UNIX version of Dimensions CM Make always sets SHELL to /bin/sh unless this
is explicitly overridden in the makefile. The Windows version of Dimensions CM Make
does not set SHELL. Instead, COMSPEC is inherited from the environment unless
explicitly set in the makefile.

 Use of command interpreter

Dimensions CM Make uses one command interpreter per set of rule commands, not
one command interpreter for each command. This may cause problems in makefiles
that rely on target evaluation order to:

• operate in the correct directory, or

• give environment variables different values.

 Default rule base differs from UNIX

The default rule base used by Dimensions CM Make for Microsoft Windows is written
to support Microsoft, rather than UNIX, tools. You can query this rule base online by
entering the command:

dm_make --no-cm -p -f nul

This writes the rule base to the standard output.

Comparing Behavior of Dimensions CM Make to GNU
Make

 Recognition of dependency and command lines

28 Dimensions CM

Chapter 1 Guide to OpenText™ Dimensions CM Make

Some editors on PC compatibles automatically expand tabs to spaces. This can result
in a syntactically incorrect makefile. To avoid the issue, Dimensions CM Make follows
the behavior of other make processors for Windows by interpreting any line starting
with whitespace as a command line, rather than just those starting with a tab
character. Specifying the special .POSIX target as the first non-comment line of a
makefile disables this behavior.

 Prerequisite Inheritance

Dimensions CM Make tracks modified prerequisites recursively. For example, you can
specify the prerequisites for an object file as:

example.obj : example.c
example.c : example.h

rather than

example.obj : example.c
example.obj : example.h

Limitations in NMAKE Compatibility
Dimensions CM Make doesn’t implement some features of NMAKE, and there are a few
other minor differences:

 The A, B, C, NOLOGO, and X options are accepted but ignored

Dimensions CM Make always writes to standard output, so the X option is effectively
fixed as /X-

 Functioning of the !CMDSWITCHES pre-processor directive

This directive sets in MAKEFLAGS only those flags that are meaningful to
Dimensions CM Make. This should not affect operation.

 Use of command interpreter

Dimensions CM Make uses one command interpreter per set of rule commands, not
one command interpreter for the whole session. This may cause problems in
makefiles that rely on target evaluation order to:

• operate in the correct directory, or

• give environment variables different values.

 Return code differences

Dimensions CM Make uses the following return codes which are different from those
used by NMAKE.

0 Success 2 An error has occurred

1 Target requires update (/Q) 3 An interrupt was received

Dimensions CM Make Guide 29

Chapter 2
Guide to ADG

Overview of ADG 30
Invoking ADG 30
Specifying the Inputs 30
Typical ADG Usage 32

30 Dimensions CM

Chapter 2 Guide to ADG

Overview of ADG
ADG is an Automatic Dependency Generator. It employs internal rules to obtain source file
dependencies. It produces output in a form suitable for use with the make utility.

Full C and C++ preprocessor support is provided. This allows include statements to be
detected and added to the dependency list.

ADG is integrated with Dimensions CM Make. If Dimensions CM Make is available, the
Dimensions database is searched for input files and include files in addition to the
system filestore.

Invoking ADG
The command line syntax of ADG is:

adg [adg-options] -- [language-options] \
-- input-file ...

The adg --options are described below. The language-options are those options you
would usually pass to a translator for the language being processed. These are essential
in languages where a macro preprocessor can change the dependencies in a file. C and
C++ languages are common examples of such languages.

Specifying the Inputs

Specifying the Language being Processed
You use the --language=language_name option to tell ADG which language you are
processing. If you do not specify this option then ADG attempts to infer it from the first
input-file name. All input files must therefore be in the same language.

ADG assumes the C language for files ending in .c and the C++ language for files ending
in .cpp, .cxx, and .c++. If the operating system differentiates filenames by case, files
ending in ',' are also treated as C++.

Specifying the Initialization File
Because ADG is intended to run in many environments, it needs a source for system
definitions. This is provided by the initialization file. ADG looks for a file called
adg_language_name.ini by default. You can specify a different name by using the
--init-file=path option.

Specifying the Outputs
ADG produces one or more dependency files as its output. How these files are produced
depends on the target or targets specified the output control options and how the input
files are specified.

Specifying the Inputs

Dimensions CM Make Guide 31

Specifying the Target
In order to produce a dependency file, ADG needs to know the name of the target the
dependencies are being generated for. This can be specified using the --target=pattern
option. The pattern can be a Dimensions CM Make style stem pattern or a single path. If a
single path is specified, the target is that file, and a single dependency file is produced. If
a pattern is specified, the --primary=pattern option must be used to map the % in the
target pattern onto the input filename. A dependency file is produced for each input file
that matches the pattern, using the corresponding target.

If you do not specify a target, ADG assumes the target has the same path as the first
input file name, less any suffix.

Specifying the Dependency Filenames
If generating a single file, the default behavior of ADG is to produce a file in the same
directory as the first input file, using the name of that input file but with any suffix
replaced by .md. This can be overridden in the same fashion as the target and primary
names by using the --output=pattern option.

ADG always adds the dependency file to the targets in the dependencies it generates. This
ensures that the dependency file is regenerated if any of the dependencies change.

Ignoring Errors
The ADG client supports a --ignore-errors option. If specified, ADG generates a
warning when it fails to parse an input file, rather than an error.

Ignoring System Include Files
The ADG client supports a --ignore-system-includes option. If specified, ADG ignores
the inclusion of system header files (#include <file.h>) when parsing the code. This
option can greatly reduce processing and improve performance.

Examples
 Process a single C source file called example.c, producing the dependency file

example.md for the target example.o:

adg --target=example.o -- -- example.c

 Process several C++ source files in directory src, creating a dependency file for each
source file in the directory deps with the corresponding target in directory obj:

adg --target=obj/%.o --primary=src/%.cpp -- \
output=deps/%.md -- \
src/file1.cpp src/file2.cpp src/file3.cpp

Considering src/file1.cpp, this creates the dependency file deps/file1.md for the
target obj/file1.o.

32 Dimensions CM

Chapter 2 Guide to ADG

Typical ADG Usage

Writing ADG Initialization Files
The initialization file depends on the C/C++ compiler you are using. This file needs to
contain the following information:

 The Default include Path for the Compiler

For UNIX systems, this is typically /usr/include. However, many compilers use their
own specific 'include' directories. On Windows, the default include path usually
depends on where the compiler was installed.

 Predefined Preprocessor Macros

These macros depend entirely on the compiler used and may depend on the flags
passed to the compiler. For example, some UNIX C compilers that parse both "classic"
and ANSI standard C define the macro "unix" in 'classic' mode, but not in ANSI mode.

ADG cannot handle option-dependent predefined macros. You need different
initialization files. See "Rule Writing" on page 35 for information on handling these in
your makefile.

There are three ways to obtain this information:

1 Work it out from the compiler documentation.

2 Use the compiler's dry-run facility if it exists.

3 If [1] and [2] fail, contact the compiler vendor's support team and ask them.

For example, if you are compiling C++ on IBM AIX you might use:

xlC -# somefile.c

Note that with this particular compiler somefile.c does not have to exist for the example
to work. This produces several lines of output, including the list of predefined symbols:

-D_AIX
-D_AIX32
-D_AIX41
-D_IBMR2
-D_POWER

This particular compiler does not provide include path information, but the 'include'
paths are mentioned in the compiler's user documentation:

-I/usr/lpp/xlC/include
-I/usr/include

Once you have the information, you can write the initialization file which has the format:

{option-lines}
{preprocessor-lines}

The {option-lines} section can contain -D, -U, and -I options. More than one option
can be placed on a line. Comments are not allowed.

The {preprocessor-lines} section can contain any preprocessor directive and
comments may be used.

Typical ADG Usage

Dimensions CM Make Guide 33

The information for xlC on IBM AIX could therefore be stated as:

-I/usr/lpp/xlC/include
-I/usr/include
/* Predefined symbols */
#define _AIX
#define _AIX32
#define _AIX41
#define _IBMR2
#define _POWER

By default, ADG looks for adg_c.ini when processing C and adg_c++.ini when
processing C++, but you can call the initialization file anything you like. For this example,
the name aix41_xlC.ini is appropriate.

Updating Your makefile to Use ADG for Dependency
Maintenance
This updating operation comprises the following steps.

 Removing the existing dependency lines for your C and C++ source to object
dependencies. These are redundant after the conversion is complete.

 Adding 'include' directives for the dependency files you intend to create. This can be
done by using one include per file or by writing one or more macros to represent the
C and C++ derived object files and writing include statements based on these
macros.

 Adding one or more rules to generate the dependency files. You also need to add the
suffix you have chosen for the dependency files to the .SUFFIXES special target.

As an example, consider the following makefile for a simple program built from C and
C++ sources:

.SUFFIXES: .o .c .C

Redefine the compiler names for AIX.

CC = xlc
CXX = xlC
prog: c_object1.o c_object2.o cxx_object1.o \

cxx_object1.o cxx_object2.o cxx_object3.o
$(CXX) -o $@ $^

c_object1.o: c_object1.c
c_object2.o: c_object2.c
cxx_object1.o: cxx_object1.C
cxx_object1.o: cxx_object1.C
cxx_object2.o: cxx_object2.C
cxx_object3.o: cxx_object3.C

34 Dimensions CM

Chapter 2 Guide to ADG

Proceed as follows.

1 Remove the object file dependency lines:

.SUFFIXES: .o .c .C

Redefine the compiler names for AIX.

CC = xlc
CXX = xlC
prog: c_object1.o c_object2.o cxx_object1.o \

cxx_object1.o\ cxx_object2.o cxx_object3.o
$(CXX) -o $@ $^

2 Put the object files into macros and add the include statements. Use separate
macros for the C and C++ objects, as you need different rules to build the
dependency files:

.SUFFIXES: .o .c .C

Redefine the compiler names for AIX.

CC = xlc
CXX = xlC

Object file lists, per compiler.

C_OBJ = c_object1.o c_object2.o
CXX_OBJ = cxx_object1.o cxx_object2.o cxx_object3.o

prog: $(C_OBJ) $(CXX_OBJ)
$(CXX) -o $@ $^

You can use any suffix, but ADG uses .md by default.

include $(C_OBJ:.o=.md)
include $(CXX_OBJ:.o=.md)

3 Add the rules and update the .SUFFIXES special target:

.SUFFIXES: .o .c .C .md

Redefine the compiler names for AIX.

CC = xlc
CXX = xlC

Object file lists, per compiler.
C_OBJ = c_object1.o c_object2.o
CXX_OBJ = cxx_object1.o cxx_object2.o cxx_object3.o

prog: $(C_OBJ) $(CXX_OBJ)
$(CXX) -o $@ $^

You can use any suffix, but ADG generates .md
files by default.

include $(C_OBJ:.o=.md)
include $(CXX_OBJ:.o=.md)
Dependency file rules, again per compiler. This allows
different initialization files to be used. Note that
the compiler options are also passed to ADG. This

Typical ADG Usage

Dimensions CM Make Guide 35

allows -I, -D and -U options in the compiler command to
be taken into account when producing the dependencies.

%.md: %.C
rm -f $@
adg --target=$*.o \

--init-file=aix41_xlC.ini \
--output=$*.md \
-- $(CXXFLAGS) -- $<

It is assumed that a C compiler initialization
file has also been produced.

%.md: %.c
rm -f $@
adg --target=$*.o \

--init-file=aix41_xlc.ini \
--output=$*.md \
-- $(CFLAGS) -- $<

Your makefile is now converted to use automatic dependency maintenance.

Rule Writing
The example above puts the dependency files in the same directory as the sources and
also assumes that the object files are in the same directory. This is often not the case. For
example, you may want to put the dependency files in their own sub-directory. This can
be handled by adjusting the include statements and rules:

include $(addprefix md/, $(C_OBJ:.o=.md))

md/%.md: %.c
rm -f $@
adg --target=$(<F).o \

--init-file=aix41_xlc.ini \
--output=$*.md \
-- $(CFLAGS) -- $<

The file obj/dynamic.mak in project PRJ_BLD of the PAYROLL demonstration product
includes rules which cope with separate source, object and dependency file directories
should you need to use the whole repertoire.

Another common problem is compiler flags which change the list of predefined symbols,
requiring either a different initialization file or adjustment of the preprocessor related
flags passed to ADG. A typical use of this is to undefine the __STDC__ macro which ADG
defines as 1 by default when processing C language files. There are two approaches to
this described below, both based on the "findstring" function of Dimensions CM Make.

Approach 1

 Maintain macros containing the relevant sets of -D, -U, and -I options.

 Use conditional directives based on the compiler flags to select the correct macro
value.

 Pass the macro as an additional language-dependent parameter to ADG.

36 Dimensions CM

Chapter 2 Guide to ADG

Assuming the IBM AIX we are using as an example, a suitable makefile fragment to
determine whether __STDC__ is defined as listed below assuming the compiler is invoked
as xlc, rather than one of the variant specific names:

ifeq "$(findstring -qlanglvl=, $(CFLAGS))" ""
Default: __STDC__ is defined as 1
ADG_STDC =

else
There is a -qlanglvl option. Check it does
not reinforce the default
ifeq "$(findstring -qlanglvl=ansi,
$(CFLAGS))" ""

ADG_STDC = -U__STDC__
endif

endif

The rule for generating dependency files from C source is changed to:

%.md: %.c
rm -f $@
adg --target=$*.o \

--init-file=aix41_xlc.ini \
--output=$*.md \
-- $(CFLAGS) $(ADG_STDC) -- $<

This means the required -U option gets passed when needed.

Approach 2

Base the name of the initialization file on the compiler options. This uses a similar
makefile extract to modify the filename for the initialization file, for example:

ifeq "$(findstring -qlanglvl=, $(CFLAGS))" ""
Default: __STDC__ is defined as 1
ADG_STDC = ansi

else
There is a -qlanglvl option. Check it does
not reinforce the default
ifeq "$(findstring -qlanglvl=ansi, $(CFLAGS))" ""

ADG_STDC = classic
else

ADG_STDC = ansi
endif

endif

%.md: %.c
rm -f $@
adg --target=$*.o \

--init-file=aix41_xlc_$(ADG_STDC).ini \
--output=$*.md \
-- $(CFLAGS) -- $<

Use whichever approach is simplest in your configuration.

Typical ADG Usage

Dimensions CM Make Guide 37

ADG Options

Controlling the Set of Generated Dependencies

--target=<pattern>

Specifies a pattern for the target.

--primary=<pattern>

Specifies a pattern for the primary dependency.

--output=<pattern>

Specifies a pattern for the generated dependency file.

--controlled-only

Specifies that only dependencies that are under Dimensions control are to be
included in the generated dependency list. This option is ignored if
--no-configuration-management is specified.

--link-to-target

Specifies that an additional dependency making the target dependent on the
generated dependency file. This is the default if --no-preserve or
--no-configuration-management is specified. This additional dependency
prevents missed rebuilds when controlled files with modification times older
than previously built uncontrolled targets are gotten during dependency
analysis. It is inadvisable to use this option when preserving files, as a
spurious dependency on the generated dependency file is recorded in the
Dimensions database.

--no-link-to-target

Specifies that the additional dependency described under --link-to-target
above is not to be added to the generated dependency file. This is the default
if neither --no-preserve nor --no-configuration-management is
specified.

Specifying Additional Inputs

--include-path=<path-string>

Allows an additional include path to be specified. The syntax of
<path-string> is a list of directories separated by a colon (:) on UNIX or a
semicolon (;) under Windows.

--include-symbol=<symbol-name>

Allows an additional include path to be specified. The value of the environment
variable <symbol-name> must have the same syntax as the <path-string>
for the --include-path option.

NOTE Include paths specified with either the --include-path or --include-symbol.
A command is required for the target to be preserved as an item, even on systems where
object library indices are maintained on each update. If you are using such a system, the
simplest solution is to use "true" as a dummy command.

38 Dimensions CM

Chapter 2 Guide to ADG

Specifying Language and Compiler Details

--init-file=""

Specifies the initialization file. The default is adg_<language-name>.ini,
where language-name is either "c" or "c++".

--language=<language-name>

Specifies the language. Valid values for <language-name> are "c" and "c++".

Controlling Dimensions Access

--no-configuration-management, --no-cm, --no-pcms

Specifies that ADG should not connect to a Dimensions database.

--no-expand

Specifies that any dependency files gotten from Dimensions should not be
expanded.

--no-preserve, --no-save

Specifies that the target referred to by the generated dependency file is not
preserved in Dimensions by a subsequent Dimensions CM Make invocation.
This option affects the default set of dependencies generated (refer to
--link-to-target on page 37). ADG does not update the Dimensions
database itself.

--preserve=<preserve-classes>, -save=<preserve-classes>

Specifies that the target referred to by the generated dependency file is
preserved in Dimensions by a subsequent Dimensions CM Make invocation.
This option affects the default set of dependencies generated (see
--link-to-target on page 37). ADG does not update the Dimensions
database itself. The <preserve-classes> value can be any string, so values
valid for Dimensions CM Make are acceptable. ADG only uses the presence of
the option to determine its behavior. The value of the option is irrelevant.

--work-set-root=<path>, --ws-root=<path>

Specifies which directory is to be mapped to the project root. The default is
calculated in the same manner as Dimensions CM Make.

--work-set=<work-set-spec>, --ws=<work-set-spec>

Specifies which project is to be mapped to the current project. The default is
calculated in the same manner as Dimensions CM Make.

Miscellaneous Options

--version

If specified, ADG prints its version and exit without performing any other
action.

--configuration-path=<path>, --csp=<path>

Specifies the fallback configuration search path. The syntax and semantics for
this option are the same as the Dimensions CM Make --configuration-path
option.

Typical ADG Usage

Dimensions CM Make Guide 39

--ignore-errors

If specified, ADG generates a warning when it fails to parse an input file, rather
than an error.

--xml-bom[=<bom-file>]

See "--xml-bom[=<bom-file>]" on page 25.

40 Dimensions CM

Chapter 2 Guide to ADG

	Table of Contents
	Guide to OpenText™ Dimensions CM Make
	Overview of Dimensions CM Make
	Dimensions CM Make Processes
	Dimensions CM Make Architecture

	Online Examples
	Setting Up MCX_LISTEN for Multi-Homed Servers
	Dimensions CM Make Terminology
	Invoking Dimensions CM Make
	Integrating with Dimensions CM Versioning
	The Current Project
	The --configuration-path Option
	The pcmsfile
	Possible Problems When Preserving Files
	Specifying Target Reuse
	Automatic Dependency Generation

	Building Object Libraries and Other Containers
	Building Double Colon Targets
	Options Summary
	Improving Dimensions CM Make Efficiency
	Behavior of Dimensions CM Make Under Windows
	Comparing Behavior of Dimensions CM Make to GNU Make
	Limitations in NMAKE Compatibility

	Guide to ADG
	Overview of ADG
	Invoking ADG
	Specifying the Inputs
	Specifying the Language being Processed
	Specifying the Initialization File
	Specifying the Outputs
	Specifying the Target
	Specifying the Dependency Filenames
	Ignoring Errors
	Ignoring System Include Files
	Examples

	Typical ADG Usage
	Writing ADG Initialization Files
	Updating Your makefile to Use ADG for Dependency Maintenance
	Rule Writing
	ADG Options

